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Preface

The central theme of Introduction to Electric Circuits is the concept that electric circuits are part

of the basic fabric of modern technology. Given this theme, we endeavor to show how the

analysis and design of electric circuits are inseparably intertwined with the ability of the engineer

to design complex electronic, communication, computer, and control systems as well as consumer

products.

A p p r o a c h a n d O r g a n i z a t i o n

This book is designed for a one- to three-term course in electric circuits or linear circuit analysis and is

structured for maximum flexibility. The flowchart in Figure 1 demonstrates alternative chapter

organizations that can accommodate different course outlines without disrupting continuity.

The presentation is geared to readers who are being exposed to the basic concepts of electric

circuits for the first time, and the scope of the work is broad. Students should come to the course with the

basic knowledge of differential and integral calculus.

This book endeavors to prepare the reader to solve realistic problems involving electric circuits.

Thus, circuits are shown to be the results of real inventions and the answers to real needs in industry, the

office, and the home. Although the tools of electric circuit analysis may be partially abstract, electric

circuits are the building blocks of modern society. The analysis and design of electric circuits are critical

skills for all engineers.

Wha t ’ s N ew i n t h e 9 t h E d i t i o n

Revisions to Improve Clarity

Chapter 10, covering AC circuits, has been largely rewritten to improve clarity of exposition.

In addition, revisions have been made through the text to improve clarity. Sometimes these revisions

are small, involving sentences or paragraphs. Other larger revisions involved pages or even entire

sections. Often these revisions involve examples. Consequently, the 9th edition contains 36 new

examples.

More Problems

The 9th edition contains 180 new problems, bringing the total number of problems to more than 1,400.

This edition uses a variety of problem types and they range in difficulty from simple to challenging,

including:

! Straightforward analysis problems.

! Analysis of complicated circuits.

! Simple design problems. (For example, given a circuit and the specified response, determine the

required RLC values.)

! Compare and contrast, multipart problems that draw attention to similarities or differences between

two situations.

! MATLAB and PSpice problems.

! Design problems. (Given some specifications, devise a circuit that satisfies those specifications.)

! How Can We Check . . . ? (Verify that a solution is indeed correct.)
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F e a t u r e s R e t a i n e d f r om P r e v i o u s E d i t i o n s

Introduction

Each chapter begins with an introduction that motivates consideration of the material of that chapter.

Examples

Because this book is oriented toward providing expertise in problem solving, we have included more

than 260 illustrative examples. Also, each example has a title that directs the student to exactly what is

being illustrated in that particular example.

Various methods of solving problems are incorporated into select examples. These cases show

students that multiple methods can be used to derive similar solutions or, in some cases, that multiple

solutions can be correct. This helps students build the critical thinking skills necessary to discern the

best choice between multiple outcomes.

Much attention has been given to using PSpice and MATLAB to solve circuits problems. Two

appendices, one introducing PSpice and the other introducing MATLAB, briefly describe the

capabilities of the programs and illustrate the steps needed to get started using them. Next, PSpice
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FIGURE 1 Flow chart showing alternative paths through the topics in this textbook.
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and MATLAB are used throughout the text to solve various circuit analysis and design problems. For

example, PSpice is used in Chapter 5 to find a Th!evenin equivalent circuit and in Chapter 15 to represent

circuit inputs and outputs as Fourier series. MATLAB is frequently used to obtain plots of circuit inputs

and outputs that help us to see what our equations are telling us. MALAB also helps us with some long

and tedious arithmetic. For example, in Chapter 10, MATLAB helps us do the complex arithmetic that

we must do in order to analyze ac circuits, and in Chapter 14, MATLAB helps with the partial fraction

required to find inverse Laplace transforms.
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Of course, there’s more to using PSpice and MATLAB than simply running the programs. We

pay particular attention to interpreting the output of these computer programs and checking it to make

sure that it is correct. Frequently, this is done in the section called “How Can We Check . . . ?” that is

included in every chapter. For example, Section 8.9 shows how to interpret and check a PSpice

“Transient Response,” and Section 13.7 shows how to interpret and check a frequency response

produced using MATLAB or PSpice.

Design Examples, a Problem-Solving Method, and

“How Can We Check . . . ?” Sections

Each chapter concludes with a design example that uses the methods of that chapter to solve a design

problem. A formal five-step problem-solving method is introduced in Chapter 1 and then used in each

of the design examples. An important step in the problem-solving method requires you to check

your results to verify that they are correct. Each chapter includes a section entitled “How Can We

Check . . . ? ” that illustrates how the kind of results obtained in that chapter can be checked to ensure

correctness.

Key Equations and Formulas

You will find that key equations, formulas, and important notes have been called out in a shaded box to

help you pinpoint critical information.

Summarizing Tables and Figures

The procedures and methods developed in this text have been summarized in certain key tables and

figures. Students will find these to be an important problem-solving resource.

! Table 1.5-1. The passive convention.

! Figure 2.7-1 and Table 2.7-1. Dependent sources.

! Table 3.10-1. Series and parallel sources.

! Table 3.10-1. Series and parallel elements. Voltage and current division.

! Figure 4.2-3. Node voltages versus element currents and voltages.

! Figure 4.5-4. Mesh currents versus element currents and voltages.

! Figures 5.4-3 and 5.4-4. Thévenin equivalent circuits.

! Figure 6.3-1. The ideal op amp.

! Figure 6.5-1. A catalog of popular op amp circuits.

! Table 7.8-1. Capacitors and inductors.

! Table 7.13-2. Series and parallel capacitors and inductors.

! Table 8.11-1. First-order circuits.

! Tables 9.13-1, 2, and 3. Second-order circuits.

! Table 10.5-1. Voltage and current division for AC circuits.

! Table 10.16-1. AC circuits in the frequency domain (phasors and impedances).

! Table 11.5-1. Power formulas for AC circuits.

! Tables 11.13-1 and 11.13-2. Coupled inductors and ideal transformers.

! Table 13.4-1. Resonant circuits.

! Tables 14.2-1 and 14.2-2. Laplace transform tables.
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! Table 14.7-1. s-domain models of circuit elements.

! Table 15.4-1. Fourier series of selected periodic waveforms.

Introduction to Signal Processing

Signal processing is an important application of electric circuits. This book introduces signal processing

in two ways. First, two sections (Sections 6.6 and 7.9) describe methods to design electric circuits that

implement algebraic and differential equations. Second, numerous examples and problems throughout

this book illustrate signal processing. The input and output signals of an electric circuit are explicitly

identified in each of these examples and problems. These examples and problems investigate the

relationship between the input and output signals that is imposed by the circuit.

Interactive Examples and Exercises

Numerous examples throughout this book are labeled as interactive examples. This label indicates that

computerized versions of that example are available at the textbook’s companion site, www.wiley.com/

svoboda. Figure 2 illustrates the relationship between the textbook example and the computerized

example available on theWeb site. Figure 2a shows an example from Chapter 3. The problem presented

by the interactive example shown in Figure 2b is similar to the textbook example but different in several

ways:

! The values of the circuit parameters have been randomized.

! The independent and dependent sources may be reversed.

! The reference direction of the measured voltage may be reversed.

! A different question is asked. Here, the student is asked to work the textbook problem backward,

using the measured voltage to determine the value of a circuit parameter.

The interactive example poses a problem and then accepts and checks the user’s answer. Students are

provided with immediate feedback regarding the correctness of their work. The interactive example

chooses parameter values somewhat randomly, providing a seemingly endless supply of problems. This

pairing of a solution to a particular problem with an endless supply of similar problems is an effective

aid for learning about electric circuits.

The interactive exercise shown in Figure 2c considers a similar, but different, circuit. Like the

interactive example, the interactive exercise poses a problem and then accepts and checks the user’s

answer. Student learning is further supported by extensive help in the form of worked example

problems, available from within the interactive exercise, using the Worked Example button.

Variations of this problem are obtained using the New Problem button. We can peek at the

answer, using the Show Answer button. The interactive examples and exercises provide hundreds of

additional practice problems with countless variations, all with answers that are checked immediately

by the computer.

S u p p l em e n t s a n d We b S i t e M a t e r i a l

The almost ubiquitous use of computers and the Web have provided an exciting opportunity to rethink

supplementary material. The supplements available have been greatly enhanced.

Book Companion Site

Additional student and instructor resources can be found on the John Wiley & Sons textbook

companion site at www.wiley.com/college/svoboda.
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Student

! Interactive Examples The interactive examples and exercises are powerful support resources

for students. They were created as tools to assist students in mastering skills and building

their confidence. The examples selected from the text and included on the Web give students

options for navigating through the problem. They can immediately request to see the solution or

select a more gradual approach to help. Then they can try their hand at a similar problem by simply

electing to change the values in the problem. By the time students attempt the homework, they have

built the confidence and skills to complete their assignments successfully. It’s a virtual homework

helper.

New Problem

Show Answer

The voltmeter measures a voltage in volts. 

What is the value of the resistance R in Ω?  

Calculator

Worked Examples

12 V

R 27 Ω

+

–

Voltmeter

ia –

+

+

–

1.2 V

12 V

4 Ω 5 Ω

+

–

Voltmeter

(b)

(c)

(a)

3ia

2ia

3ia

ia

vm

vm

–

+

+

–

New Problem

Show Answer

The ammeter measures a current in amps. What 

is the value of the current measured by the ammeter?

Calculator

Worked Examples

12 V

4 Ω 2 Ω

+

–

Ammeter

ia im

FIGURE 2 (a) The circuit considered Example 3.2-5. (b) A corresponding interactive example. (c) A corresponding

interactive exercise.
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! PSpice for Linear Circuits, available for purchase.

! WileyPLUS option.

Instructor

! Solutions manual.

! PowerPoint slides.

! WileyPLUS option.

WileyPLUS

Pspice for Linear Circuits is a student supplement available for purchase. The PSpice for Linear

Circuits manual describes in careful detail how to incorporate this valuable tool in solving problems.

This manual emphasizes the need to verify the correctness of computer output. No example is finished

until the simulation results have been checked to ensure that they are correct.

A c k n ow l e d gm e n t s a n d C omm i tm e n t t o A c c u r a c y

We are grateful to many people whose efforts have gone into the making of this textbook. We are

especially grateful to our Executive Editor Daniel Sayre, Executive Marketing Manager Chris Ruel and

Marketing Assistant Marissa Carroll for their support and enthusiasm. We are grateful to Tim Lindner

and Kevin Holm of Wiley and Bruce Hobart of Laserwords Maine for their efforts in producing this

textbook. We wish to thank Senior Product Designer Jenny Welter, Content Editor Wendy Ashenberg,

and Editorial Assistant Jess Knecht for their significant contributions to this project.

We are particularly grateful to the team of reviewers who checked the problems and solutions to

ensure their accuracy:

Accuracy Checkers

Khalid Al-Olimat, Ohio Northern

University

Lisa Anneberg, Lawrence

Technological University

Horace Gordon, University of South

Florida

Lisimachos Kondi, SUNY, Buffalo

Michael Polis, Oakland University

Sannasi Ramanan, Rochester Institute

of Technology

William Robbins, University of Minnesota

James Rowland, University of Kansas

Mike Shen, Duke University

Thyagarajan Srinivasan, Wilkes

University

Aaron Still, U.S. Naval Academy

Howard Weinert, Johns Hopkins University

Xiao-Bang Xu, Clemson University

Jiann Shiun Yuan, University of

Central Florida
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CHAPTER 1 Electric Circuit
Variables

I N T H I S C H A P T E R

1.1 Introduction

1.2 Electric Circuits

and Current

1.3 Systems of

Units

1.4 Voltage

1.5 Power and

Energy

1.6 Circuit Analysis

and Design

1.7 How Can We

Check . . . ?

1.8 DESIGN

EXAMPLE—Jet

Valve Controller

1.9 Summary

Problems

Design Problems

1.1 I n t r o d u c t i o n

A circuit consists of electrical elements connected together. Engineers use electric circuits to solve

problems that are important to modern society. In particular:

1. Electric circuits are used in the generation, transmission, and consumption of electric power and

energy.

2. Electric circuits are used in the encoding, decoding, storage, retrieval, transmission, and processing

of information.

In this chapter, we will do the following:

! Represent the current and voltage of an electric circuit element, paying particular

attention to the reference direction of the current and to the reference direction or polarity of

the voltage.

! Calculate the power and energy supplied or received by a circuit element.

! Use the passive convention to determine whether the product of the current and

voltage of a circuit element is the power supplied by that element or the power received by

the element.

! Use scientific notation to represent electrical quantities with a wide range of magnitudes.

1.2 E l e c t r i c C i r c u i t s a n d C u r r e n t

The outstanding characteristics of electricity when compared with other power sources are its

mobility and flexibility. Electrical energy can be moved to any point along a couple of wires and,

depending on the user’s requirements, converted to light, heat, or motion.

An electric circuit or electric network is an interconnection of electrical elements linked

together in a closed path so that an electric current may flow continuously.
1



Consider a simple circuit consisting of two well-known electrical elements, a battery and a

resistor, as shown in Figure 1.2-1. Each element is represented by the two-terminal element

shown in Figure 1.2-2. Elements are sometimes called devices, and terminals are sometimes called

nodes.

Charge may flow in an electric circuit. Current is the time rate of change of charge past a given

point. Charge is the intrinsic property of matter responsible for electric phenomena. The quantity of

charge q can be expressed in terms of the charge on one electron, which is "1.602# 10"19 coulombs.

Thus, "1 coulomb is the charge on 6.24# 1018 electrons. The current through a specified area is

defined by the electric charge passing through the area per unit of time. Thus, q is defined as the charge

expressed in coulombs (C).

Charge is the quantity of electricity responsible for electric phenomena.

Then we can express current as

i ¼
dq

dt
ð1:2-1Þ

The unit of current is the ampere (A); an ampere is 1 coulomb per second.

Current is the time rate of flow of electric charge past a given point.

Note that throughout this chapter we use a lowercase letter, such as q, to denote a variable that is a

function of time, q(t). We use an uppercase letter, such as Q, to represent a constant.

The flow of current is conventionally represented as a flow of positive charges. This convention

was initiated by Benjamin Franklin, the first great American electrical scientist. Of course, we

now know that charge flow in metal conductors results from electrons with a negative charge.

Nevertheless, we will conceive of current as the flow of positive charge, according to accepted

convention.

Figure 1.2-3 shows the notation that we use to describe a current. There are two parts to

this notation: a value (perhaps represented by a variable name) and an assigned direction. As a

matter of vocabulary, we say that a current exists in or through an element. Figure 1.2-3 shows

that there are two ways to assign the direction of the current through an element. The current i1
is the rate of flow of electric charge from terminal a to terminal b. On the other hand, the

current i2 is the flow of electric charge from terminal b to terminal a. The currents i1 and i2 are

Wire

Wire

ResistorBattery

FIGURE 1.2-1 A simple circuit.

a b

FIGURE 1.2-2 A general two-terminal electrical element

with terminals a and b.

i1

i2

ba

FIGURE 1.2-3 Current

in a circuit element.
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similar but different. They are the same size but have different directions. Therefore, i2 is the negative

of i1 and

i1 ¼ "i2

We always associate an arrow with a current to denote its direction. A complete description of current

requires both a value (which can be positive or negative) and a direction (indicated by an arrow).

If the current flowing through an element is constant, we represent it by the constant I, as shown in

Figure 1.2-4. A constant current is called a direct current (dc).

A direct current (dc) is a current of constant magnitude.

A time-varying current i(t) can take many forms, such as a ramp, a sinusoid, or an exponential, as

shown in Figure 1.2-5. The sinusoidal current is called an alternating current (ac).

(b)(a) (c)

0

1

i
(A)

i
(A) i

(A)

t (s)

M

i = Mt, t ^ 0

0 t (s)

i = Ie–bt, t ^ 0

0

–I

I I

t (s)

i = I sin    t, t ^ 0ω

FIGURE 1.2-5 (a) A ramp with a slope M. (b) A sinusoid. (c) An exponential. I is a constant. The current i is zero for t< 0.

If the charge q is known, the current i is readily found using Eq. 1.2-1. Alternatively, if the current

i is known, the charge q is readily calculated. Note that from Eq. 1.2-1, we obtain

q ¼

Z t

"1

i dt ¼

Z t

0

i dtþ q 0ð Þ ð1:2-2Þ

where q(0) is the charge at t¼ 0.

0

i

I

t FIGURE 1.2-4 A direct current of magnitude I.

E X A M P L E 1 . 2 - 1 Current from Charge

Find the current in an element when the charge entering the element is

q ¼ 12t C

where t is the time in seconds.

Electric Circuits and Current 3



EXERCISE 1.2-1 Find the charge that has entered an element by time t when

i¼ 8t
2 " 4t A, t) 0. Assume q(t)¼ 0 for t< 0.

Answer: q tð Þ ¼
8

3
t3 " 2t2 C

EXERCISE 1.2-2 The total charge that has entered a circuit element is q(t)¼ 4 sin 3t C when

t ) 0, and q(t)¼ 0 when t < 0. Determine the current in this circuit element for t> 0.

Answer: i tð Þ ¼
d

dt
4 sin 3t ¼ 12 cos 3t A

Solution
Recall that the unit of charge is coulombs, C. Then the current, from Eq. 1.2-1, is

i ¼
dq

dt
¼ 12 A

where the unit of current is amperes, A.

E X A M P L E 1 . 2 - 2 Charge from Current

Find the charge that has entered the terminal of an element from t¼ 0 s to t¼ 3 s when the current entering the

element is as shown in Figure 1.2-6.

1

0 1 2 3–1

2

3

4

i (A)

t (s) FIGURE 1.2-6 Current waveform for Example 1.2-2.

Solution
From Figure 1.2-6, we can describe i(t) as

i tð Þ ¼
0 t < 0

1 0 < t * 1

t t > 1

8

<

:

Using Eq. 1.2-2, we have

q 3ð Þ " q 0ð Þ ¼

Z 3

0

i tð Þdt ¼

Z 1

0

1 dt þ

Z 3

1

t dt

¼ t

%

%

%

%

1

0

þ
t2

2

%

%

%

%

3

1

¼ 1þ
1

2
9" 1ð Þ ¼ 5 C

Alternatively, we note that integration of i(t) from t¼ 0 to t¼ 3 s simply requires the calculation of the area under

the curve shown in Figure 1.2-6. Then, we have

q ¼ 1þ 2# 2 ¼ 5 C

Try it 

yourself 

in WileyPLUS
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1.3 S y s t em s o f U n i t s

In representing a circuit and its elements, we must define a consistent system of units for the quantities

occurring in the circuit. At the 1960 meeting of the General Conference of Weights and Measures, the

representatives modernized the metric system and created the Syst!eme International d’Unites,

commonly called SI units.

SI is Syst!eme International d’Unit"es or the International System of Units.

The fundamental, or base, units of SI are shown in Table 1.3-1. Symbols for units that represent proper

(persons’) names are capitalized; the others are not. Periods are not used after the symbols, and the symbols do

not take on plural forms. The derived units for other physical quantities are obtained by combining the

fundamental units. Table 1.3-2 shows the more common derived units along with their formulas in terms of

the fundamental units or preceding derived units. Symbols are shown for the units that have them.

Table 1.3-1 SI Base Units

SI UNIT

QUANTITY NAME SYMBOL

Length meter m

Mass kilogram kg

Time second s

Electric current ampere A

Thermodynamic temperature kelvin K

Amount of substance mole mol

Luminous intensity candela cd

Table 1.3-2 Derived Units in SI

QUANTITY UNIT NAME FORMULA SYMBOL

Acceleration — linear meter per second per second m/s2

Velocity — linear meter per second m/s

Frequency hertz s"1 Hz

Force newton kg + m/s2 N

Pressure or stress pascal N/m2 Pa

Density kilogram per cubic meter kg/m3

Energy or work joule N + m J

Power watt J/s W

Electric charge coulomb A + s C

Electric potential volt W/A V

Electric resistance ohm V/A V

Electric conductance siemens A/V S

Electric capacitance farad C/V F

Magnetic flux weber V + s Wb

Inductance henry Wb/A H

Systems of Units 5



The basic units such as length in meters (m), time in seconds (s), and current in amperes (A) can

be used to obtain the derived units. Then, for example, we have the unit for charge (C) derived from the

product of current and time (A + s). The fundamental unit for energy is the joule (J), which is force times

distance or N + m.

The great advantage of the SI system is that it incorporates a decimal system for relating larger

or smaller quantities to the basic unit. The powers of 10 are represented by standard prefixes given in

Table 1.3-3. An example of the common use of a prefix is the centimeter (cm), which is 0.01 meter.

The decimal multiplier must always accompany the appropriate units and is never written by itself.

Thus, we may write 2500W as 2.5 kW. Similarly, we write 0.012A as 12mA.

EXERCISE 1.3-1 Which of the three currents, i1¼ 45 mA, i2¼ 0.03 mA, and i3¼ 25 # 10"4 A,

is largest?

Answer: i3 is largest.

Table 1.3-3 SI Prefixes

MULTIPLE PREFIX SYMBOL

1012 tera T

109 giga G

106 mega M

103 kilo k

10"2 centi c

10"3 milli m

10"6 micro m

10"9 nano n

10"12 pico p

10"15 femto f

E X A M P L E 1 . 3 - 1 SI Units

A mass of 150 grams experiences a force of 100 newtons. Find the energy or work expended if the mass moves

10 centimeters. Also, find the power if the mass completes its move in 1 millisecond.

Solution
The energy is found as

energy ¼ force# distance ¼ 100# 0:1 ¼ 10 J

Note that we used the distance in units of meters. The power is found from

power ¼
energy

time period

where the time period is 10"3 s. Thus,

power ¼
10

10"3
¼ 104 W ¼ 10 kW

6 1. Electric Circuit Variables



1.4 V o l t a g e

The basic variables in an electrical circuit are current and voltage. These variables

describe the flow of charge through the elements of a circuit and the energy required to

cause charge to flow. Figure 1.4-1 shows the notation we use to describe a voltage.

There are two parts to this notation: a value (perhaps represented by a variable name)

and an assigned direction. The value of a voltage may be positive or negative. The

direction of a voltage is given by its polarities (þ,"). As a matter of vocabulary, we say

that a voltage exists across an element. Figure 1.4-1 shows that there are two ways to

label the voltage across an element. The voltage vba is proportional to the work required to move a

positive charge from terminal a to terminal b. On the other hand, the voltage vab is proportional to the

work required to move a positive charge from terminal b to terminal a. We sometimes read vba as “the

voltage at terminal b with respect to terminal a.” Similarly, vab can be read as “the voltage at terminal a

with respect to terminal b.” Alternatively, we sometimes say that vba is the voltage drop from terminal a

to terminal b. The voltages vab and vba are similar but different. They have the same magnitude but

different polarities. This means that

vab ¼ "vba

When considering vba, terminal b is called the “þ terminal” and terminal a is called the “" terminal.”On

the other hand, when talking about vab, terminal a is called the “þ terminal” and terminal b is called the

“" terminal.”

The voltage across an element is the work (energy) required to move a unit positive charge

from the " terminal to the þ terminal. The unit of voltage is the volt, V.

The equation for the voltage across the element is

v ¼
dw

dq
ð1:4-1Þ

where v is voltage, w is energy (or work), and q is charge. A charge of 1 coulomb delivers an energy of

1 joule as it moves through a voltage of 1 volt.

1.5 P ow e r a n d E n e r g y

The power and energy delivered to an element are of great importance. For example, the useful output

of an electric lightbulb can be expressed in terms of power. We know that a 300-watt bulb delivers more

light than a 100-watt bulb.

Power is the time rate of supplying or receiving power.

Thus, we have the equation

p ¼
dw

dt
ð1:5-1Þ

vba

ba

–

–

+

+ vab

FIGURE 1.4-1 Voltage

across a circuit element.

Power and Energy 7



where p is power in watts, w is energy in joules, and t is time in seconds. The power

associated with the current through an element is

p ¼
dw

dt
¼

dw

dq
+
dq

dt
¼ v + i ð1:5-2Þ

From Eq. 1.5-2, we see that the power is simply the product of the voltage across

an element times the current through the element. The power has units of watts.

Two circuit variables are assigned to each element of a circuit: a voltage and a

current. Figure 1.5-1 shows that there are two different ways to arrange the direction

of the current and the polarity of the voltage. In Figure 1.5-1a, the current is directed

from the þ toward the " of the voltage polarity. In contrast, in Figure 1.5-1b, the

current is directed from the " toward the þ of the voltage polarity.

First, consider Figure 1.5-1a. When the current enters the circuit element at the

þ terminal of the voltage and exits at the" terminal, the voltage and current are said to

“adhere to the passive convention.” In the passive convention, the voltage pushes a

positive charge in the direction indicated by the current. Accordingly, the power

calculated by multiplying the element voltage by the element current

p ¼ vi

is the power received by the element. (This power is sometimes called “the power absorbed by the

element” or “the power dissipated by the element.”) The power received by an element can be either

positive or negative. This will depend on the values of the element voltage and current.

Next, consider Figure 1.5-1b. Here the passive convention has not been used. Instead, the current

enters the circuit element at the " terminal of the voltage and exits at the þ terminal. In this case, the

voltage pushes a positive charge in the direction opposite to the direction indicated by the current.

Accordingly, when the element voltage and current do not adhere to the passive convention, the power

calculated by multiplying the element voltage by the element current is the power supplied by the

element. The power supplied by an element can be either positive or negative, depending on the values

of the element voltage and current.

The power received by an element and the power supplied by that same element are related by

power received ¼ "power supplied

The rules for the passive convention are summarized in Table 1.5-1. When the element voltage

and current adhere to the passive convention, the energy received by an element can be determined

+      v (t ) −i (t )
a b

(a)

−      v (t ) +i (t )
a b

(b)

FIGURE 1.5-1 (a) The element

voltage and current adhere to the

passive convention. (b) The

element voltage and current do

not adhere to the passive

convention.

Table 1.5-1 Power Received or Supplied by an Element

POWER RECEIVED BY AN ELEMENT POWER SUPPLIED BY AN ELEMENT

ba

+ –v

i

ba

+– v

i

Because the reference directions of

v and i adhere to the passive

convention, the power

p ¼ vi

is the power received by the

element.

Because the reference directions of

v and i do not adhere to the

passive convention, the power

p ¼ vi

is the power supplied by the

element.
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from Eq. 1.5-1 by rewriting it as

dw ¼ p dt ð1:5-3Þ

On integrating, we have

w ¼

Z t

"1

p dt ð1:5-4Þ

If the element only receives power for t ) t0 and we let t0 ¼ 0, then we have

w ¼

Z t

0

p dt ð1:5-5Þ

E X A M P L E 1 . 5 - 1 Electrical Power and Energy

v+ –

i

FIGURE 1.5-2 The element

considered in Example 1.5-1.

Let us consider the element shown in Figure 1.5-2 when v¼ 8V and i¼ 25mA. Find the power received by the

element and the energy received during a 10-ms interval.

Solution
In Figure 1.5-2 the current i and voltage v adhere to the passive convention. Consequently the power

p ¼ vi ¼ 8 (0:025) ¼ 0:2 W ¼ 200 mW

is the power received by the circuit element. Next, the energy received by the element is

w ¼

Z t

0

p dt ¼

Z 0:010

0

0:2 dt ¼ 0:2(0:010) ¼ 0:002 J ¼ 2 mJ

E X A M P L E 1 . 5 - 2 Electrical Power and the Passive Convention

+    vab = 4 V −i = 2 A

−  vba = −4 V +

a b
FIGURE 1.5-3 The element

considered in Example 1.5-2.

Consider the element shown in Figure 1.5-3. The current i and voltage vab adhere to the passive convention, so

i + vab ¼ 2 + "4ð Þ ¼ "8 W

is the power received by this element. The current i and voltage vba do not adhere to the passive convention, so

i + vba ¼ 2 + 4ð Þ ¼ 8 W

is the power supplied by this element. As expected

power received ¼ "power supplied

Power and Energy 9



EXERCISE 1.5-1 Figure E 1.5-1 shows four circuit elements identified by the letters A, B, C,

and D.

(a) Which of the devices supply 12 W?

(b) Which of the devices absorb 12 W?

E X A M P L E 1 . 5 - 3 Power, Energy, and the Passive Convention

Consider the circuit shown in Figure 1.5-4 with v(t)¼ 12e"8t V and i(t)¼ 5e"8t A for t) 0. Both v(t) and i(t) are

zero for t< 0. Find the power supplied by this element and the energy supplied by the element over the first 100 ms

of operation.

−      v (t ) +i (t )
a b FIGURE 1.5-4 The element considered in Example 1.5-3.

Solution
The power

p(t) ¼ v(i) i(t) ¼ 12e"8t
& '

5e"8t
& '

¼ 60e"16t W

is the power supplied by the element because v(t) and i(t) do not adhere to the passive convention. This element is

supplying power to the charge flowing through it.

The energy supplied during the first 100 ms ¼ 0.1 seconds is

w(0:1) ¼

Z 0:1

0

p dt ¼

Z 0:1

0

60e"16t
& '

dt

¼ 60
e"16t

"16

%

%

%

%

0:1

0

¼ "
60

16
e"1:6 " 1
& '

¼ 3:75 1" e"1:6
& '

¼ 2:99 J

E X A M P L E 1 . 5 - 4 Energy in a Thunderbolt

The average current in a typical lightning thunderbolt is 2# 104 A, and its typical duration is 0.1 s (Williams,

1988). The voltage between the clouds and the ground is 5# 108 V. Determine the total charge transmitted to the

earth and the energy released.

Solution
The total charge is

Q ¼

Z 0:1

0

i tð Þ dt ¼

Z 0:1

0

2# 104 dt ¼ 2# 103 C

The total energy released is

w ¼

Z 0:1

0

i tð Þ # v tð Þ dt ¼

Z 0:1

0

2# 104
& '

5# 108
& '

dt ¼ 1012 J ¼ 1 TJ

Try it 

yourself 

in WileyPLUS
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(c) What is the value of the power received by device B?

(d) What is the value of the power delivered by device B?

(e) What is the value of the power delivered by device D?

(A)

+ 4 V

3 A

–

(B)

– 2 V

6 A

(C)

++ 6 V

2 A

–

(D)

– 3 V

4 A

+

FIGURE E 1.5-1

Answers: (a) B and C, (b) A and D, (c) "12 W, (d) 12 W, (e) "12 W

1.6 C i r c u i t A n a l y s i s a n d D e s i g n

The analysis and design of electric circuits are the primary activities described in this book and are key

skills for an electrical engineer. The analysis of a circuit is concerned with the methodical study of a

given circuit designed to obtain the magnitude and direction of one or more circuit variables, such as a

current or voltage.

The analysis process beginswith a statement of the problem and usually includes a given circuit model.

The goal is to determine the magnitude and direction of one or more circuit variables, and the final task is to

verify that the proposed solution is indeed correct. Usually, the engineer first identifies what is known and the

principles that will be used to determine the unknown variable.

The problem-solving method that will be used throughout this book is shown in Figure 1.6-1.

Generally, the problem statement is given. The analysis process then moves sequentially through

the five steps shown in Figure 1.6-1. First, we describe the situation and the assumptions. We also

record or review the circuit model that is provided. Second, we state the goals and requirements, and we

CorrectIncorrect

State the problem.

Describe the situation and
the assumptions.

State the goals and
requirements.

Generate a plan to obtain
a solution of the problem.

Act on the plan.

Communicate the solution.

Verify that the proposed
solution is indeed correct.

Problem

Situation

Goal

Plan

Act

Verify

Solution
FIGURE 1.6-1 The problem-solving method.
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normally record the required circuit variable to be determined. The third step is to create a plan that will

help obtain the solution of the problem. Typically, we record the principles and techniques that pertain

to this problem. The fourth step is to act on the plan and carry out the steps described in the plan. The

final step is to verify that the proposed solution is indeed correct. If it is correct, we communicate this

solution by recording it in writing or by presenting it verbally. If the verification step indicates that the

proposed solution is incorrect or inadequate, then we return to the plan steps, reformulate an improved

plan, and repeat steps 4 and 5.

To illustrate this analytical method, we will consider an example. In Example 1.6-1, we use the

steps described in the problem-solving method of Figure 1.6-1.

E X A M P L E 1 . 6 - 1 The Formal Problem-Solving Method

An experimenter in a lab assumes that an element is absorbing power and uses a voltmeter and ammeter to measure

the voltage and current as shown in Figure 1.6-2. The measurements indicate that the voltage is v¼þ12V and the

current is i¼"2A. Determine whether the experimenter’s assumption is correct.

Describe the Situation and the Assumptions: Strictly speaking, the element is absorbing power. The value

of the power absorbed by the element may be positive or zero or negative.When we say that someone “assumes that

an element is absorbing power,”wemean that someone assumes that the power absorbed by the element is positive.

The meters are ideal. These meters have been connected to the element in such a way as to measure the

voltage labeled v and the current labeled i. The values of the voltage and current are given by the meter readings.

State the Goals: Calculate the power absorbed by the element to determine whether the value of the power

absorbed is positive.

Generate a Plan: Verify that the element voltage and current adhere to the passive convention. If so, the

power absorbed by the device is p¼ vi. If not, the power absorbed by the device is p¼"vi.

Act on the Plan: Referring to Table 1.5-1, we see that the element voltage and current do adhere to the

passive convention. Therefore, power absorbed by the element is

p ¼ vi ¼ 12 + "2ð Þ ¼ "24 W

The value of the power absorbed is not positive.

Verify the Proposed Solution: Let’s reverse the ammeter probes as shown in Figure 1.6-3. Now the

ammeter measures the current i1 rather than the current i, so i1¼ 2 A and v¼ 12 V. Because i1 and v do not adhere to

the passive convention, p¼ i1 + v¼ 24W is the power supplied by the element. Supplying 24W is equivalent to

absorbing "24W, thus verifying the proposed solution.

Voltmeter

1 2 . 0

Ammeter

i

v+ –

Element

– 2 . 0

FIGURE 1.6-2 An element with a voltmeter and ammeter.

Voltmeter

1 2 . 0

Ammeter

i1

v+ –

Element

2 . 0 0

FIGURE 1.6-3 The circuit from Figure 1.6-2 with the ammeter

probes reversed.
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Design is a purposeful activity in which a designer visualizes a desired outcome. It is the process

of originating circuits and predicting how these circuits will fulfill objectives. Engineering design is the

process of producing a set of descriptions of a circuit that satisfy a set of performance requirements and

constraints.

The design process may incorporate three phases: analysis, synthesis, and evaluation. The first

task is to diagnose, define, and prepare—that is, to understand the problem and produce an explicit

statement of goals; the second task involves finding plausible solutions; the third concerns judging the

validity of solutions relative to the goals and selecting among alternatives. A cycle is implied in which

the solution is revised and improved by reexamining the analysis. These three phases are part of a

framework for planning, organizing, and evolving design projects.

Design is the process of creating a circuit to satisfy a set of goals.

The problem-solving process shown in Figure 1.6-1 is used in Design Examples included in each

chapter.

1.7 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For

example, proposed solutions to design problems must be checked to confirm that all of the specifica-

tions have been satisfied. In addition, computer output must be reviewed to guard against data-entry

errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,

occasionally just a little time remains at the end of an exam. It is useful to be able quickly to identify

those solutions that need more work.

This text includes some examples that illustrate techniques useful for checking the solutions of

the particular problems discussed in that chapter. At the end of each chapter, some problems are

presented that provide an opportunity to practice these techniques.

E X A M P L E 1 . 7 - 1 How Can We Check Power and the Passive Convention?

A laboratory report states that the measured values of v and i for the circuit element

shown in Figure 1.7-1 are "5 V and 2 A, respectively. The report also states that the

power absorbed by the element is 10 W. How can we check the reported value of the

power absorbed by this element?

Solution
Does the circuit element absorb"10W orþ10W? The voltage and current shown in Figure 1.7-1 do not adhere to

the passive sign convention. Referring to Table 1.5-1, we see that the product of this voltage and current is the

power supplied by the element rather than the power absorbed by the element.

Then the power supplied by the element is

p ¼ vi ¼ "5ð Þ 2ð Þ ¼ "10W

The power absorbed and the power supplied by an element have the same magnitude but the opposite sign. Thus,

we have verified that the circuit element is indeed absorbing 10 W.

– +

i

v

FIGURE 1.7-1 A circuit

element with measured

voltage and current.

How Can We Check . . . ? 13



1 . 8 D E S I G N E X A M P L E Jet Valve Controller

A small, experimental space rocket uses a two-

element circuit, as shown in Figure 1.8-1, to

control a jet valve from point of liftoff at t¼ 0

until expiration of the rocket after one minute.

The energy that must be supplied by element 1

for the one-minute period is 40 mJ. Element 1 is a

battery to be selected.

It is known that i(t)¼De"t/60 mA for t) 0,

and the voltage across the second element is v2(t)¼
Be"t/60 V for t) 0. The maximum magnitude

of the current, D, is limited to 1 mA. Determine

the required constants D and B and describe the

required battery.

Describe the Situation and the Assumptions

1. The current enters the plus terminal of the second element.

2. The current leaves the plus terminal of the first element.

3. The wires are perfect and have no effect on the circuit (they do not absorb energy).

4. The model of the circuit, as shown in Figure 1.8-1, assumes that the voltage across the two elements is

equal; that is, v1¼ v2.

5. The battery voltage v1 is v1¼Be"t/60 V where B is the initial voltage of the battery that will

discharge exponentially as it supplies energy to the valve.

6. The circuit operates from t¼ 0 to t¼ 60 s.

7. The current is limited, so D * 1 mA.

State the Goal
Determine the energy supplied by the first element for the one-minute period and then select the constants D and B.

Describe the battery selected.

Generate a Plan
First, find v1(t) and i(t) and then obtain the power, p1(t), supplied by the first element. Next, using p1(t), find the

energy supplied for the first 60 s.

GOAL EQUATION NEED INFORMATION

The energy w1 for the

first 60 s w1 ¼

Z 60

0

p1 tð Þ dt p1(t)
v1 and i known except for

constants D and B

Act on the Plan
First, we need p1(t), so we first calculate

p1 tð Þ ¼ iv1 ¼ De"t/60 # 10"3 A
& '

Be"t/60 V
& '

¼ DBe"t/30 # 10"3 W ¼ DBe"t/30 mW

i

v1 v2

Wire

Wire

Element

1

Element

2

+ +

– –

Jet value

controller

FIGURE 1.8-1 The circuit to control

a jet valve for a space rocket.
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1.9 SUMMARY
Charge is the intrinsic property of matter responsible for

electric phenomena. The current in a circuit element is the

rate of movement of charge through the element. The voltage

across an element indicates the energy available to cause

charge to move through the element.

Given the current, i, and voltage, v, of a circuit element, the

power, p, and energy, w, are given by

p ¼ v + i and w ¼

Z t

0

pdt

Table 1.5-1 summarizes the use of the passive convention

when calculating the power supplied or received by a circuit

element.

The SI units (Table 1.3-1) are used by today’s engineers and

scientists. Using decimal prefixes (Table 1.3-3), we may

simply express electrical quantities with a wide range of

magnitudes.

Second, we need to find w1 for the first 60 s as

w1 ¼

Z 60

0

DBe"t/30 # 10"3
& '

dt ¼
DB # 10"3e"t=30

"1=30

%

%

%

%

60

0

¼ "30DB # 10"3 e"2 " 1ð Þ ¼ 25:9DB # 10"3 J

Because we require w1) 40 mJ,

40 * 25:9DB

Next, select the limiting value, D¼ 1, to get

B )
40

25; :9ð Þ 1ð Þ
¼ 1:54 V

Thus, we select a 2-V battery so that the magnitude of the current is less than 1 mA.

Verify the Proposed Solution
We must verify that at least 40 mJ is supplied using the 2-V battery. Because i¼ e"t/60 mA and v2¼ 2e"t/60 V, the

energy supplied by the battery is

w ¼

Z 60

0

2e"t/60
& '

e"t/60 # 10"3
& '

dt ¼

Z 60

0

2e"t/30 # 10"3 dt ¼ 51:8 mJ

Thus, we have verified the solution, and we communicate it by recording the requirement for a 2-V battery.

PROBLEMS

Section 1.2 Electric Circuits and Current

P 1.2-1 The total charge that has entered a circuit element

is q(t)¼ 1.25(1"e
"5t) when t) 0 and q(t)¼ 0 when t< 0.

Determine the current in this circuit element for t) 0.

Answer: i tð Þ ¼ 6:25e"5t A

P 1.2-2 The current in a circuit element is i(t)¼ 4(1"e
"5t)

A when t) 0 and i(t)¼ 0 when t< 0. Determine the total

charge that has entered a circuit element for t) 0.

Hint: q 0ð Þ ¼

Z 0

"1

i tð Þ dt ¼

Z 0

"1

0 dt ¼ 0

Answer: q tð Þ ¼ 4t þ 0:8e"5t " 0:8 C for t ) 0

P 1.2-3 The current in a circuit element is i(t)¼ 4 sin 5t A

when t) 0 and i(t)¼ 0 when t< 0. Determine the total charge

that has entered a circuit element for t) 0.

Hint: q 0ð Þ ¼

Z 0

"1

i tð Þ dt ¼

Z 0

"1

0 dt ¼ 0

Problem available in WileyPLUS at instructor’s discretion.
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P 1.2-4 The current in a circuit element is

i tð Þ ¼

0 t < 2

2 2 < t < 4

"1 4 < t < 8

0 8 < t

8

>

>

<

>

>

:

where the units of current are A and the units of time are s.

Determine the total charge that has entered a circuit element

for t) 0.

Answer:

q tð Þ ¼

0 t < 2

2t " 4 2 < t < 4

8" t 4 < t < 8

0 8 < t

where the units of

8

>

>

<

>

>

:

charge are C.

P 1.2-5 The total charge q(t), in coulombs, that enters the

terminal of an element is

q tð Þ ¼
0 t < 0

2t 0 * t * 2

3þ e"2 t"2ð Þ t > 2

8

<

:

Find the current i(t) and sketch its waveform for t) 0.

P 1.2-6 An electroplating bath, as shown in Figure P 1.2-

6, is used to plate silver uniformly onto objects such as kitchen-

ware and plates. A current of 450 A flows for 20 minutes, and

each coulomb transports 1.118mg of silver. What is the weight

of silver deposited in grams?

Silver bar
Object to 
be plated

Bath

i i

Figure P 1.2-6 An electroplating bath.

P 1.2-7 Find the charge q(t) and sketch its waveform when the

current entering a terminal of an element is as shown in Figure

P 1.2-7. Assume that q(t)¼ 0 for t< 0.

1

1 2 3

2

3

i (A)

4 t (s)

Figure P 1.2-7

Section 1.3 Systems of Units

P 1.3-1 A constant current of 3.2 mA flows through an

element. What is the charge that has passed through the element

in the first millisecond?

Answer: 3.2 nC

P 1.3-2 A charge of 45 nC passes through a circuit

element during a particular interval of time that is 5ms in

duration. Determine the average current in this circuit element

during that interval of time.

Answer: i¼ 9 mA

P 1.3-3 Ten billion electrons per second pass through a

particular circuit element. What is the average current in that

circuit element?

Answer: i¼ 1.602 nA

P 1.3-4 Thechargeflowing inawire isplotted inFigureP1.3-4.

Sketch the corresponding current.

2 4

15

7

q (t), nC

t, ms

Figure P 1.3-4

P 1.3-5 The current in a circuit element is plotted in Figure

P 1.3-5. Sketch the corresponding charge flowing through the

element for t > 0.

80 140

–450

–600

i (t), mA

t, ms

Figure P 1.3-5

P 1.3-6 The current in a circuit element is plotted in Figure

P 1.3-6. Determine the total charge that flows through the

circuit element between 300 and 1200 ms.
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720

–720

400 800 1200

i (t), nA

t, µs

Figure P 1.3-6

Section 1.5 Power and Energy

P 1.5-1 Figure P 1.5-1 shows four circuit elements

identified by the letters A, B, C, and D.

(a) Which of the devices supply 30 mW?

(b) Which of the devices absorb 0.03 W?

(c) What is the value of the power received by device B?

(d) What is the value of the power delivered by device B?

(e) What is the value of the power delivered by device C?

(A)

+ 10 V

3 mA

–

(B)

+ 5 V

6 mA

–

(C)

– 6 V

5 mA

+

(D)

– 15 V

2 mA

+

Figure P 1.5-1

P 1.5-2 An electric range has a constant current of 10A

entering the positive voltage terminal with a voltage of 110V. The

range is operated for two hours. (a) Find the charge in coulombs

that passes through the range. (b) Find the power absorbed by the

range. (c) If electric energy costs 12 cents per kilowatt-hour,

determine the cost of operating the range for two hours.

P 1.5-3 A walker’s cassette tape player uses four AA

batteries in series to provide 6V to the player circuit. The

four alkaline battery cells store a total of 200watt-seconds of

energy. If the cassette player is drawing a constant 10mA

from the battery pack, how long will the cassette operate at

normal power?

P 1.5-4 The current through and voltage across an element

vary with time as shown in Figure P 1.5-4. Sketch the power

delivered to the element for t> 0. What is the total energy

delivered to the element between t¼ 0 and t¼ 25 s? The

element voltage and current adhere to the passive convention.

5

30

100 2515 t (s)

v (volts)

(a)

5

30

100 2515 t (s)

i (amp)

(b)

Figure P 1.5-4 (a) Voltage v(t) and (b) current i(t) for an element.

P 1.5-5 An automobile battery is charged with a constant

current of 2A for five hours. The terminal voltage of the battery

is v¼ 11þ 0.5tV for t> 0, where t is in hours. (a) Find the

energy delivered to the battery during the five hours. (b) If

electric energy costs 15 cents/kWh, find the cost of charging the

battery for five hours.

Answer: (b) 1.84 cents

P 1.5-6 Find the power, p(t), supplied by the element

shown in Figure P 1.5-6 when v(t)¼ 4 cos 3t V and

i tð Þ ¼
sin 3t

12
A. Evaluate p(t) at t¼ 0.5 s and at t¼ 1 s.

Observe that the power supplied by this element has a positive

value at some times and a negative value at other times.

Hint: sin atð Þ cos btð Þ ¼
1

2
sin a þ bð Þt þ sin a " bð Þtð Þ

Answer:

p tð Þ ¼
1

6
sin 6t W; p 0:5ð Þ ¼ 0:0235 W; p 1ð Þ ¼ "0:0466 W

i

v

+

–

Figure P 1.5-6 An element.

P 1.5-7 Findthepower,p(t), suppliedbytheelement shown

in Figure P 1.5-6 when v(t)¼ 8 sin 3tV and i(t)¼ 2 sin 3t A.

Hint: sin atð Þ sin btð Þ ¼
1

2
cos a " bð Þt " cos a þ bð Þtð Þ

Answer: p tð Þ ¼ 8" 8cos 6t W
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P 1.5-8 Find the power, p(t), supplied by the element

shown in Figure P 1.5-6. The element voltage is represented

as v(t)¼ 4(1"e"2t)V when t) 0 and v(t)¼ 0 when t< 0. The

element current is represented as i(t)¼ 2e"2t A when t) 0

and i(t)¼ 0 when t< 0.

Answer: p tð Þ ¼ 8 1" e"2tð Þe"2t W

P 1.5-9 The battery of a flashlight develops 3V, and the

current through the bulb is 200mA.What power is absorbedby the

bulb?Find the energy absorbedby the bulb in afive-minute period.

P 1.5-10 Medical researchers studying hypertension often use

a technique called “2D gel electrophoresis” to analyze the

protein content of a tissue sample. An image of a typical “gel”

is shown in Figure P1.5-10a.

The procedure for preparing the gel uses the electric circuit

illustrated in Figure 1.5-10b. The sample consists of a gel and a

filter paper containing ionized proteins. A voltage source causes a

large, constant voltage, 500 V, across the sample. The large,

constant voltage moves the ionized proteins from the filter paper

to the gel. The current in the sample is given by

i tð Þ ¼ 2þ 30e"at mA

where t is the time elapsed since the beginning of the procedure

and the value of the constant a is

a ¼ 0:85
1

hr

Determine the energy supplied by the voltage source when the

gel preparation procedure lasts 3 hours.

+ 500 V

500 V

–

sample

i (t)

(b)

(a)

Devon Svoboda, Queen’s University

Figure P 1.5-10 (a) An image of a gel and (b) the electric circuit

used to prepare gel.

Section 1.7 How CanWe Check . . . ?

P 1.7-1 Conservation of energy requires that the sum of

the power received by all of the elements in a circuit be zero.

Figure P 1.7-1 shows a circuit. All of the element voltages and

currents are specified. Are these voltage and currents correct?

Justify your answer.

Hint:Calculate the power received by each element. Add up

all of these powers. If the sum is zero, conservation of energy

is satisfied and the voltages and currents are probably

correct. If the sum is not zero, the element voltages and

currents cannot be correct.

++ –

–

2 A

2 A 3 A 5 A

–5 A

4 V

+– 5 V

3 V

+

–

–2 V

+ –1 V

Figure P 1.7-1

P 1.7-2 Conservation of energy requires that the sum of

the power received by all of the elements in a circuit be zero.

Figure P 1.7-2 shows a circuit. All of the element voltages and

currents are specified. Are these voltage and currents correct?

Justify your answer.

Hint:Calculate the power received by each element. Add up

all of these powers. If the sum is zero, conservation of energy

is satisfied and the voltages and currents are probably

correct. If the sum is not zero, the element voltages and

currents cannot be correct. +

+

–

–

3 A 2 A

2 A

–3 A

–3 A

3 A4 V

3 V

+

–

–3 V

+

–

3 V

+

–

3 V

+ –4 V

Figure P 1.7-2

P 1.7-3 The element currents and voltages shown in

Figure P 1.7-3 are correct with one exception: the reference

direction of exactly one of the element currents is reversed.

Determine which reference direction has been reversed.

a

d

c
b

–5A5V

−2A

–  1V  + –  2V  +

−6V 2A

4A

7A −8V

–3A

+ +

+

+

–

– –

– 3V

Figure P 1.7-3
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Design Problems

DP 1-1 A particular circuit element is available in three grades.

Grade A guarantees that the element can safely absorb 1=2W

continuously. Similarly, Grade B guarantees that 1=4W can be

absorbed safely, and Grade C guarantees that 1=8W can be

absorbed safely. As a rule, elements that can safely absorb more

power are also more expensive and bulkier.

The voltage across an element is expected to be about

20V, and the current in the element is expected to be about

8mA. Both estimates are accurate to within 25 percent. The

voltage and current reference adhere to the passive convention.

Specify the grade of this element. Safety is the most

important consideration, but don’t specify an element that is

more expensive than necessary.

DP 1-2 The voltage across a circuit element is v(t)¼ 20 (1"e"8t)

Vwhen t) 0 and v(t)¼ 0when t< 0. The current in this element is

i(t)¼ 30e"8tmA when t) 0 and i(t)¼ 0 when t< 0. The element

current and voltage adhere to the passive convention. Specify the

power that this device must be able to absorb safely.

Hint: Use MATLAB, or a similar program, to plot the power.

Design Problems 19



CHAPTER 2 Circuit Elements

I N T H I S C H A P T E R

2.1 Introduction

2.2 Engineering and

Linear Models

2.3 Active and Passive

Circuit Elements

2.4 Resistors

2.5 Independent Sources

2.6 Voltmeters and

Ammeters

2.7 Dependent Sources

2.8 Transducers

2.9 Switches

2.10 How Can We

Check . . . ?

2.11 DESIGN

EXAMPLE—

Temperature Sensor

2.12 Summary

Problems

Design Problems

2.1 I n t r o d u c t i o n

Not surprisingly, the behavior of an electric circuit depends on the behaviors of the individual

circuit elements that comprise the circuit. Of course, different types of circuit elements behave

differently. The equations that describe the behaviors of the various types of circuit elements are

called the constitutive equations. Frequently, the constitutive equations describe a relationship

between the current and voltage of the element. Ohm’s law is a well-known example of a constitutive

equation.

In this chapter, we will investigate the behavior of several common types of circuit

element:

! Resistors.

! Independent voltage and current sources.

! Open circuits and short circuits.

! Voltmeters and ammeters.

! Dependent sources.

! Transducers.

! Switches.

2.2 E n g i n e e r i n g a n d L i n e a r M o d e l s

The art of engineering is to take a bright idea and, using money, materials, knowledgeable people,

and a regard for the environment, produce something the buyer wants at an affordable price.

Engineers use models to represent the elements of an electric circuit. A model is a description

of those properties of a device that we think are important. Frequently, the model will consist of

an equation relating the element voltage and current. Though the model is different from the electric

device, the model can be used in pencil-and-paper calculations that will predict how a circuit composed

of actual devices will operate. Engineers frequently face a trade-off when selecting a model for a

device. Simple models are easy to work with but may not be accurate. Accurate models are usually more

complicated and harder to use. The conventional wisdom suggests that simple models be used first. The

results obtained using the models must be checked to verify that use of these simple models is

appropriate. More accurate models are used when necessary.20



The idealized models of electric devices are precisely defined. It is important to distinguish

between actual devices and their idealized models, which we call circuit elements. The goal of circuit

analysis is to predict the quantitative electrical behavior of physical circuits. Its aim is to predict and to

explain the terminal voltages and terminal currents of the circuit elements and thus the overall operation

of the circuit.

Models of circuit elements can be categorized in a variety of ways. For example, it is

important to distinguish linear models from nonlinear models because circuits that consist

entirely of linear circuit elements are easier to analyze than circuits that contain some

nonlinear elements.

An element or circuit is linear if the element’s excitation and response satisfy certain

properties. Consider the element shown in Figure 2.2-1. Suppose that the excitation is the

current i and the response is the voltage v. When the element is subjected to a current i1, it

provides a response v1. Furthermore, when the element is subjected to a current i2, it

provides a response v2. For a linear element, it is necessary that the excitation i1 þ i2 result

in a response v1 þ v2. This is usually called the principle of superposition.

Also, multiplying the input of a linear device by a constant must have the consequence

of multiplying the output by the same constant. For example, doubling the size of the input causes

the size of the output to double. This is called the property of homogeneity. An element is linear if,

and only if, the properties of superposition and homogeneity are satisfied for all excitations

and responses.

A linear element satisfies the properties of both superposition and homogeneity.

Let us restate mathematically the two required properties of a linear circuit, using the arrow

notation to imply the transition from excitation to response:

i ! v

Then we may state the two properties required as follows.

Superposition:

i1 ! v1
i2 ! v2

then i1 þ i2 ! v1 þ v2 ð2:2-1Þ

Homogeneity:

i ! v

then ki ! kv ð2:2-2Þ

A device that does not satisfy either the superposition or the homogeneity principle is said to be

nonlinear.

+
v

i

–

FIGURE 2.2-1

An element with an

excitation current i and a

response v.

E X A M P L E 2 . 2 - 1 A Linear Device

Consider the element represented by the relationship between current and voltage as

v ¼ Ri

Determine whether this device is linear.
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Solution
The response to a current i1 is v1 ¼ Ri1

The response to a current i2 is v2 ¼ Ri2

The sum of these responses is

v1 þ v2 ¼ Ri1 þ Ri2 ¼ R i1 þ i2ð Þ

Because the sum of the responses to i1 and i2 is equal to the response to i1 þ i2, the principle of superposition is

satisfied. Next, consider the principle of homogeneity. Because

v1 ¼ Ri1

we have for an excitation i2 ¼ ki1

v2 ¼ Ri2 ¼ Rki1

Therefore, v2 ¼ kv1

satisfies the principle of homogeneity. Because the element satisfies the properties of both superposition and

homogeneity, it is linear.

E X A M P L E 2 . 2 - 2 A Nonlinear Device

Now let us consider an element represented by the relationship between current and voltage:

v ¼ i 2

Determine whether this device is linear.

Solution
The response to a current i1 is v1 ¼ i 2

1

The response to a current i2 is v2 ¼ i 2
1

The sum of these responses is

v1 þ v2 ¼ i 2
1 þ i 2

1

The response to i1 þ i2 is

i1 þ i2ð Þ2 ¼ i 2
1 þ 2i1i2 þ i 2

1

Because

i1
2 þ i 2

1 6¼ i1 þ i2ð Þ2

the principle of superposition is not satisfied. Therefore, the device is nonlinear.
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2.3 A c t i v e a n d P a s s i v e C i r c u i t E l em e n t s

Wemay classify circuit elements in two categories, passive and active, by determiningwhether they absorb

energy or supply energy. An element is said to be passive if the total energy delivered to it from the rest of

the circuit is always nonnegative (zero or positive). Then for a passive element, with the current flowing

into the þ terminal as shown in Figure 2.3-1a, this means that

E X A M P L E 2 . 2 - 3 A Model of a Linear Device

A linear element has voltage v and current i as shown in Figure 2.2-2a. Values of the current i and corresponding

voltage v have been tabulated as shown in Figure 2.2-2b. Represent the element by an equation that expresses v as a

function of i. This equation is a model of the element. Use the model to predict the value of v corresponding to a

current of i ¼ 100mA and the value of i corresponding to a voltage of v ¼ 18V.

Solution
Figure 2.2-3 is a plot of the voltage v versus the current i. The points marked by dots represent corresponding values

of v and i from the rows of the table in Figure 2.2-2b. Because the circuit element is linear, we expect these points to

lie on a straight line, and indeed they do. We can represent the straight line by the equation

v ¼ mi þ b

where m is the slope and b is the v-intercept. Noticing that the straight line passes through the origin, v ¼ 0 when

i ¼ 0, we see that b ¼ 0. We are left with

v ¼ mi

The slope m can be calculated from the data in any two rows of the table in Figure 2.2-2b. For example:

11:25( 4:5

25( 10
¼ 0:45

V

mA
;
22:5( 11:25

50( 25
¼ 0:45

V

mA
; and

22:5( 4:5

50( 10
¼ 0:45

V

mA

Consequently,

m ¼ 0:45
V

mA
¼ 450

V

A

and

v ¼ 450i

This equation is a model of the linear element. It predicts that the voltage v ¼ 450 0:1ð Þ ¼ 45V corresponds to the

current i ¼ 100mA ¼ 0:1A and that the current i ¼ 18=450 ¼ 0:04A ¼ 40mA corresponds to the voltage

v ¼ 18 V.

v, V i, mA

4.5

11.25

22.5

10

25

50

–

+

v

i

(a) (b)

FIGURE 2.2-2 (a) A linear circuit element and (b) a tabulation

of corresponding values of its voltage and current.

v, V

i, mA

30

20

10

10 25 50

FIGURE 2.2-3 A plot of voltage versus current for the linear

element from Figure 2.2-2.

Try it 

yourself 

in WileyPLUS
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w ¼

Z t

(1

vi dt * 0 ð2:3-1Þ

for all values of t.

A passive element absorbs energy.

An element is said to be active if it is capable of delivering energy. Thus, an active element violates

Eq. 2.3-1 when it is represented by Figure 2.3-1a. In other words, an active element is one that is capable of

generating energy. Active elements are potential sources of energy, whereas passive elements are sinks or

absorbers of energy. Examples of active elements include batteries and generators. Consider the element

shown in Figure 2.3-1b. Note that the current flows into the negative terminal and out of the positive

terminal. This element is said to be active if

w ¼

Z t

(1

vi dt * 0 ð2:3-2Þ

for at least one value of t.

An active element is capable of supplying energy.

+

v

+

v

i

i

Exit
node

Exit
node

Entry
node

Entry
node

(b)(a)

– –

FIGURE 2.3-1 (a) The entry node of the current i is the positive node of the voltage v;

(b) the entry node of the current i is the negative node of the voltage v. The current flows from

the entry node to the exit node.

E X A M P L E 2 . 3 - 1 An Active Circuit Element

A circuit has an element represented by Figure 2.3-1b where the current is a constant 5 A and the voltage is a

constant 6 V. Find the energy supplied over the time interval 0 to T.

Solution
Because the current enters the negative terminal, the energy supplied by the element is given by

w ¼

Z T

0

6ð Þ 5ð Þdt ¼ 30T J

Thus, the device is a generator or an active element, in this case a dc battery.
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2.4 R e s i s t o r s

The ability of a material to resist the flow of charge is called its resistivity, r. Materials that are good

electrical insulators have a high value of resistivity. Materials that are good conductors of electric

current have low values of resistivity. Resistivity values for selected materials are given in Table 2.4-1.

Copper is commonly used for wires because it permits current to flow relatively unimpeded. Silicon is

commonly used to provide resistance in semiconductor electric circuits. Polystyrene is used as an

insulator.

Resistance is the physical property of an element or device that impedes the flow of current; it

is represented by the symbol R.

Georg Simon Ohm was able to show that the current in a circuit composed of a battery

and a conducting wire of uniform cross-section could be expressed as

i ¼
Av

rL
ð2:4-1Þ

where A is the cross-sectional area, r the resistivity, L the length, and v the voltage across the

wire element. Ohm, who is shown in Figure 2.4-1, defined the constant resistance R as

R ¼
rL

A
ð2:4-2Þ

Ohm’s law, which related the voltage and current, was published in 1827 as

v ¼ Ri ð2:4-3Þ

The unit of resistance R was named the ohm in honor of Ohm and is usually abbreviated by the

V (capital omega) symbol, where 1 V ¼ 1 V/A. The resistance of a 10-m length of common

TV cable is 2 mV.

An element that has a resistance R is called a resistor. A resistor is represented by the

two-terminal symbol shown in Figure 2.4-2. Ohm’s law, Eq. 2.4-3, requires that the i-versus-v

relationship be linear. As shown in Figure 2.4-3, a resistor may become nonlinear outside its

normal rated range of operation. We will assume that a resistor is linear unless stated

otherwise. Thus, we will use a linear model of the resistor as represented by Ohm’s law.

In Figure 2.4-4, the element current and element voltage of a resistor are labeled. The

relationship between the directions of this current and voltage is important. The voltage

direction marks one resistor terminal þ and the other(. The current ia flows from the terminal

marked þ to the terminal marked (. This relationship between the current and voltage

reference directions is a convention called the passive convention. Ohm’s law states that when

the element voltage and the element current adhere to the passive convention, then

v ¼ Ria ð2:4-4Þ

Table 2.4-1 Resistivities of SelectedMaterials

MATERIAL RESISTIVITY r (OHM.CM)

Polystyrene 1 + 1018

Silicon 2.3 + 105

Carbon 4 + 10(3

Aluminum 2.7 + 10(6

Copper 1.7 + 10(6

FIGURE 2.4-1

Georg Simon Ohm

(1787–1854), who

determined Ohm’s law in

1827. The ohm was

chosen as the unit of

electrical resistance in his

honor.

R

FIGURE 2.4-2 Symbol

for a resistor having a

resistance of R ohms.

Photo by Hulton Archive/

Getty Images
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Consider Figure 2.4-4. The element currents ia and ib are the same except for the assigned direction, so

ia ¼ (ib

The element current ia and the element voltage v adhere to the passive convention,

v ¼ Ria

Replacing ia by (ib gives

v ¼ (Rib

There is a minus sign in this equation because the element current ib and the element voltage v do not

adhere to the passive convention. We must pay attention to the current direction so that we don’t

overlook this minus sign.

Ohm’s law, Eq. 2.4-3, can also be written as

i ¼ Gv ð2:4-5Þ

where G denotes the conductance in siemens (S) and is the reciprocal of R; that is, G ¼ 1=R. Many

engineers denote the units of conductance as mhos with the℧ symbol, which is an inverted omega (mho is

ohm spelled backward). However, we will use SI units and retain siemens as the units for conductance.

Most discrete resistors fall into one of four basic categories: carbon composition, carbon film,

metal film, or wirewound. Carbon composition resistors have been in use for nearly 100 years and are

still popular. Carbon film resistors have supplanted carbon composition resistors for many general-

purpose uses because of their lower cost and better tolerances. Two wirewound resistors are shown in

Figure 2.4-5.

Carbon composition resistors, as shown in Figure 2.4-6, are used in circuits because of their low

cost and small size. General-purpose resistors are available in standard values for tolerances of 2, 5, 10,

and 20 percent. Carbon composition resistors and some wirewounds have a color code with three to five

bands. A color code is a system of standard colors adopted for identification of the resistance of

resistors. Figure 2.4-7 shows a metal film resistor with its color bands. This is a 1=4-watt resistor,

implying that it should be operated at or below 1=4 watt of power delivered to it. The normal range of

resistors is from less than 1 ohm to 10 megohms. Typical values of some commercially available

resistors are given in Appendix D.

(a) (b)

FIGURE 2.4-5 (a) Wirewound resistor with an

adjustable center tap. (b) Wirewound resistor with a

fixed tap.

0

v

im–

im

FIGURE 2.4-3 A resistor operating

within its specified current range, ,

im, can be modeled by Ohm’s law.

–+ v

Ria ib

FIGURE 2.4-4 A resistor with

element current and element

voltage.

Courtesy of Vishay Intertechnology, Inc.
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The power delivered to a resistor (when the passive convention is used) is

p ¼ vi ¼ v
v

R

" #

¼
v2

R
ð2:4-6Þ

Alternatively, because v ¼ iR, we can write the equation for power as

p ¼ vi ¼ iRð Þi ¼ i2R ð2:4-7Þ

Thus, the power is expressed as a nonlinear function of the current i through the resistor or of the voltage

v across it.

E X A M P L E 2 . 4 - 1 Power Dissipated by a Resistor

Let us devise a model for a car battery when the lights are left on and the engine is

off. We have all experienced or seen a car parked with its lights on. If we leave the car

for a period, the battery will run down or go dead. An auto battery is a 12-V constant-

voltage source, and the lightbulb can be modeled by a resistor of 6 ohms. The circuit is

shown in Figure 2.4-8. Let us find the current i, the power p, and the energy supplied by

the battery for a four-hour period.

Solution
According to Ohm’s law, Eq. 2.4-3, we have

v ¼ Ri

Because v ¼ 12 V and R ¼ 6 V, we have i ¼ 2 A.

To find the power delivered by the battery, we use

p ¼ vi ¼ 12 2ð Þ ¼ 24W

Finally, the energy delivered in the four-hour period is

w ¼

Z t

0

pdt ¼ 24t ¼ 24 60+ 60+ 4ð Þ ¼ 3:46+ 105 J

Because the battery has a finite amount of stored energy, it will deliver this energy and eventually be unable to

deliver further energy without recharging. We then say the battery is run down or dead until recharged. A typical

auto battery may store 106 J in a fully charged condition.

R

i

12 V 6 Ω+–

FIGURE 2.4-8 Model of a

car battery and the headlight

lamp.

FIGURE 2.4-6 Carbon composition resistors.
FIGURE 2.4-7 A 1=4-watt metal film resistor. The body

of the resistor is 6 mm long.

Courtesy of Vishay Intertechnology, Inc.

Courtesy of Hifi Collective.
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EXERCISE 2.4-1 Find the power absorbed by a 100-ohm resistor when it is connected directly

across a constant 10-V source.

Answer: 1-W

EXERCISE 2.4-2 A voltage source v ¼ 10 cos t V is connected across a resistor of 10 ohms. Find

the power delivered to the resistor.

Answer: 10 cos2t W

2.5 I n d e p e n d e n t S o u r c e s

Some devices are intended to supply energy to a circuit. These devices are called sources. Sources are

categorized asbeing oneof two types: voltage sources and current sources. Figure 2.5-1a shows the symbol

that is used to represent a voltage source. The voltage of a voltage source is specified, but the current is

determinedbytherestofthecircuit.Avoltagesourceisdescribedbyspecifyingthefunctionv(t),forexample,

v tð Þ ¼ 12 cos 1000t or v tð Þ ¼ 9 or v tð Þ ¼ 12( 2t

An active two-terminal element that supplies energy to a circuit is a source of energy. An independent

voltage source provides a specified voltage independent of the current through it and is independent of

any other circuit variable.

A source is a voltage or current generator capable of supplying energy to a circuit.

An independent current source provides a current independent of the voltage across the source

element and is independent of any other circuit variable. Thus, when we say a source is independent, we

mean it is independent of any other voltage or current in the circuit.

An independent source is a voltage or current generator not dependent on other circuit

variables.

Suppose the voltage source is a battery and

v tð Þ ¼ 9 volts

The voltage of this battery is known to be 9 volts regardless of the circuit in which the battery is used. In

contrast, the current of the voltage source is not known and depends on the circuit in which the source is

used. The current could be 6 amps when the voltage source is connected to one circuit and 6 milliamps

when the voltage source is connected to another circuit.

Figure 2.5-1b shows the symbol that is used to represent a current source. The current of a current

source is specified, but the voltage is determined by the rest of the circuit. A current source is described

by specifying the function i(t), for example,

i tð Þ ¼ 6 sin 500t or i tð Þ ¼ (0:25 or i tð Þ ¼ t þ 8

A current source specified by i(t) ¼ (0.25 milliamps will have a current of (0.25 milliamps in any

circuit in which it is used. The voltage across this current source will depend on the particular circuit.

The preceding paragraphs have ignored some complexities to give a simple description of the

way sources work. The voltage across a 9-volt battery may not actually be 9 volts. This voltage

depends on the age of the battery, the temperature, variations in manufacturing, and the battery

+

(b)

(a)

+
– v(t)

i(t)

–

v(t) i(t)

FIGURE 2.5-1

(a) Voltage

source.

(b) Current

source.
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current. It is useful to make a distinction between real sources, such as batteries, and the simple

voltage and current sources described in the preceding paragraphs. It would be ideal if the real

sources worked like these simple sources. Indeed, the word ideal is used to make this distinction. The

simple sources described in the previous paragraph are called the ideal voltage source and the ideal

current source.

The voltage of an ideal voltage source is given to be a specified function, say v(t). The

current is determined by the rest of the circuit.

The current of an ideal current source is given to be a specified function, say i(t). The

voltage is determined by the rest of the circuit.

An ideal source is a voltage or a current generator independent of the current through

the voltage source or the voltage across the current source.

Engineers frequently face a trade-off when selecting a model for a device. Simple models are

easy to work with but may not be accurate. Accurate models are usually more complicated and

harder to use. The conventional wisdom suggests that simple models be used first. The results

obtained using the models must be checked to verify that use of these simple models is appropriate.

More accurate models are used when necessary.

E X A M P L E 2 . 5 - 1 A Battery Modeled as a Voltage Source

Consider the plight of the engineer who needs to analyze a circuit containing a 9-volt battery. Is it really necessary

for this engineer to include the dependence of battery voltage on the age of the battery, the temperature, variations

in manufacturing, and the battery current in this analysis? Hopefully not. We expect the battery to act enough like

an ideal 9-volt voltage source that the differences can be ignored. In this case, it is said that the battery is modeled as

an ideal voltage source.

To be specific, consider a battery specified by the plot of voltage versus current shown in Figure 2.5-2a. This

plot indicates that the battery voltage will be v ¼ 9 volts when i - 10 milliamps. As the current increases above 10

milliamps, the voltage decreases from 9 volts. When i - 10 milliamps, the dependence of the battery voltage on the

battery current can be ignored and the battery can be modeled as an ideal voltage source.

+–

(b)(a)

10 i, mA

9

v, volts

v = 9 V

Battery

i

R

FIGURE 2.5-2 (a) A plot of battery voltage versus

battery current. (b) The battery is modeled as an

independent voltage source.

Suppose a resistor is connected across the terminals of the battery as shown in Figure 2.5-2b. The battery

current will be

i ¼
v

R
ð2:5-1Þ

The relationship between v and i shown in Figure 2.5-2a complicates this equation. This complication can be safely

ignored when i - 10 milliamps. When the battery is modeled as an ideal 9-volt voltage source, the voltage source

current is given by

i ¼
9

R
ð2:5-2Þ
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The short circuit and open circuit are special cases of ideal sources. A short circuit is

an ideal voltage source having v(t) ¼ 0. The current in a short circuit is determined by the

rest of the circuit. An open circuit is an ideal current source having i(t) ¼ 0. The voltage

across an open circuit is determined by the rest of the circuit. Figure 2.5-3 shows the

symbols used to represent the short circuit and the open circuit. Notice that the power

absorbed by each of these devices is zero.

Open and short circuits can be added to a circuit without disturbing the branch currents

and voltages of all the other devices in the circuit. Figure 2.6-3 shows how this can be done.

Figure 2.6-3a shows an example circuit. In Figure 2.6-3b an open circuit and a short circuit

have been added to this example circuit. The open circuit was connected between two nodes

of the original circuit. In contrast, the short circuit was added by cutting a wire and inserting

the short circuit. Adding open circuits and short circuits to a network in this way does not

change the network.

Open circuits and short circuits can also be described as special cases of resistors.

A resistor with resistance R ¼ 0 (G ¼ 1) is a short circuit. A resistor with conductance

G ¼ 0 (R ¼ 1) is an open circuit.

2.6 V o l tm e t e r s a n d Amme t e r s

Measurements of dc current and voltage are made with direct-reading (analog) or digital meters, as

shown in Figure 2.6-1. A direct-reading meter has an indicating pointer whose angular deflection

depends on the magnitude of the variable it is measuring. A digital meter displays a set of digits

indicating the measured variable value.

To measure a voltage or current, a meter is connected to a circuit, using terminals called probes.

These probes are color coded to indicate the reference direction of the variable being measured.

Frequently, meter probes are colored red and black. An ideal voltmeter measures the voltage from the

red to the black probe. The red terminal is the positive terminal, and the black terminal is the negative

terminal (see Figure 2.6-2b).

An ideal ammeter measures the current flowing through its terminals, as shown in Figure 2.6-2a

and has zero voltage, vm, across its terminals. An ideal voltmeter measures the voltage across

its terminals, as shown in Figure 2.6-2b, and has terminal current, im, equal to zero. Practical measuring

The distinction between these two equations is important. Eq. 2.5-1, involving the v(i relationship

shown in Figure 2.5-2a, is more accurate but also more complicated. Equation 2.5-2 is simpler but may be

inaccurate.

Suppose that R ¼ 1000 ohms. Equation 2.5-2 gives the current of the ideal voltage source:

i ¼
9

1000
¼ 9 mA ð2:5-3Þ

Because this current is less than 10 milliamps, the ideal voltage source is a good model for the battery, and it is

reasonable to expect that the battery current is 9 milliamps.

Suppose, instead, that R ¼ 600 ohms. Once again, Eq. 2.5-2 gives the current of the ideal voltage source:

i ¼
9

600
¼ 15 mA ð2:5-4Þ

Because this current is greater than 10 milliamps, the ideal voltage source is not a good model for the battery.

In this case, it is reasonable to expect that the battery current is different from the current for the ideal voltage source.

(b)

(a)

+

+

v(t)

–

i(t)

–

v(t) = 0

i(t) = 0

FIGURE 2.5-3

(a) Open circuit.

(b) Short circuit.
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(a) (b)
FIGURE 2.6-1 (a) A direct-reading (analog) meter.

(b) A digital meter.

Voltmeter

(b)(a)

Ammeter + –

+ –

v

vm = 0

im = 0

iElement

ii Element

FIGURE 2.6-2 (a) Ideal ammeter. (b) Ideal voltmeter.

10 Ω50 Ω

60 Ω20 Ω

10 Ω50 Ω

60 Ω20 Ω

10 Ω50 Ω

60 Ω20 Ω

+–
+–

+–

Voltmeter Ammeter

(b)(a)

(c)

2 volts

2 volts

2 volts

i

i

+ –v

+ –v
Open circuit

Short
circuit

FIGURE 2.6-3 (a) An example circuit, (b) plus an open circuit and a short circuit. (c) The open circuit is replaced by a

voltmeter, and the short circuit is replaced by an ammeter.
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instruments only approximate the ideal conditions. For a practical ammeter, the voltage across its

terminals is usually negligibly small. Similarly, the current into a voltmeter is usually negligible.

Ideal voltmeters act like open circuits, and ideal ammeters act like short circuits. In other words,

the model of an ideal voltmeter is an open circuit, and the model of an ideal ammeter is a short circuit.

Consider the circuit of Figure 2.6-3a and then add an open circuit with a voltage v and a short circuit

with a current i as shown in Figure 2.6-3b. In Figure 2.6-3c, the open circuit has been replaced by a

voltmeter, and the short circuit has been replaced by an ammeter. The voltmeter will measure the

voltage labeled v in Figure 2.6-3b whereas the ammeter will measure the current labeled i. Notice that

Figure 2.6-3c could be obtained from Figure 2.6-3a by adding a voltmeter and an ammeter. Ideally,

adding the voltmeter and ammeter in this way does not disturb the circuit. One more interpretation of

Figure 2.6-3 is useful. Figure 2.6-3b could be formed from Figure 2.6-3c by replacing the voltmeter and

the ammeter by their (ideal) models.

The reference direction is an important part of an element voltage or element current. Figures 2.6-

4 and 2.6-5 show that attention must be paid to reference directions when measuring an element voltage

or element current. Figure 2.6-4a shows a voltmeter. Voltmeters have two color-coded probes. This

color coding indicates the reference direction of the voltage being measured. In Figures 2.6-4b and

Figure 2.6-4c the voltmeter is used to measure the voltage across the 6-kV resistor. When the voltmeter

is connected to the circuit as shown in Figure 2.6-4b, the voltmeter measures va, withþ on the left, at the

red probe. When the voltmeter probes are interchanged as shown in Figure 2.6-4c, the voltmeter

measures vb, with þ on the right, again at the red probe. Note vb ¼ (va.

+

Voltmeter

(b)(a) (c)

+ –va

Voltmeter

+ –v

12 V

5 kΩ 6 kΩ

4 kΩ10 kΩ+–

Voltmeter

– vb

12 V

5 kΩ 6 kΩ

4 kΩ10 kΩ+–

+ 3 . 6 – 3 . 6

FIGURE 2.6-4 (a) The correspondence between the color-coded probes of the voltmeter and the reference direction of the

measured voltage. In (b), theþ sign of va is on the left, whereas in (c), theþ sign of vb is on the right. The colored probe is

shown here in blue. In the laboratory this probe will be red. We will refer to the colored probe as the “red probe.”

(b)(a) (c)

Ammeter

12 V

6 kΩ

4 kΩ+–

i

Ammeter

+ 1 . 2

ia

12 V

6 kΩ

4 kΩ+–

Ammeter

– 1 . 2

ib

FIGURE 2.6-5 (a) The correspondence between the color-coded probes of the ammeter and the reference direction of the

measured current. In (b) the current ia is directed to the right, while in (c) the current ib is directed to the left. The colored

probe is shown here in blue. In the laboratory this probe will be red. We will refer to the colored probe as the “red probe.”
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Figure 2.6-5a shows an ammeter. Ammeters have two color-coded probes. This color coding

indicates the reference direction of the current beingmeasured. InFigures 2.6-5b and c, the ammeter is used

tomeasure the current in the 6-kV resistor.When the ammeter is connected to the circuit as shown inFigure

2.6-5b, the ammeter measures ia, directed from the red probe toward the black probe. When the ammeter

probes are interchanged as shown in Figure 2.6-5c, the ammeter measures ib, again directed from the red

probe toward the black probe. Note ib ¼ (ia.

2.7 D e p e n d e n t S o u r c e s

Dependent sources model the situation in which the voltage or current of one circuit element is

proportional to the voltage or current of the second circuit element. (In contrast, a resistor is a circuit

element in which the voltage of the element is proportional to the current in the same element.)

Dependent sources are used to model electronic devices such as transistors and amplifiers. For example,

the output voltage of an amplifier is proportional to the input voltage of that amplifier, so an amplifier

can be modeled as a dependent source.

Figure 2.7-1a shows a circuit that includes a dependent source. The diamond symbol represents a

dependent source. The plus and minus signs inside the diamond identify the dependent source as a

voltage source and indicate the reference polarity of the element voltage. The label “5i” represents the

voltage of this dependent source. This voltage is a product of two factors, 5 and i. The second factor, i,

indicates that the voltage of this dependent source is controlled by the current, i, in the 18-V resistor.

The first factor, 5, is the gain of this dependent source. The gain of this dependent source is the ratio of

the controlled voltage, 5i, to the controlling current, i. This gain has units of V=A or V. Because this

dependent source is a voltage source and because a current controls the voltage, the dependent source is

called a current-controlled voltage source (CCVS).

Figure 2.7-1b shows the circuit from 2.7-1a, using a different point of view. In Figure 2.7-1b, a

short circuit has been inserted in series with the 18-V resistor. Now we think of the controlling current i

as the current in a short circuit rather than the current in the 18-V resistor itself. In this way, we can

(a)

+ –v

18 Ω

+– 12 Ω 5 i24 V

i

+–

(b)

18 Ω

+– 12 Ω 5 i24 V

i

+–

(c)

18 Ω

+– 12 Ω 0.2 v 0.2 v24 V

(d)

18 Ω

+– 12 Ω24 V

+ –v

FIGURE 2.7-1 The controlling current of a dependent source shown as (a) the current in an element and as (b) the current

in a short circuit in series with that element. The controlling voltage of a dependent source shown as (c) the voltage across

an element and as (d ) the voltage across an open circuit in parallel with that element.
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always treat the controlling current of a dependent source as the current in a short circuit. We will use

this second point of view to categorize dependent sources in this section.

Figure 2.7-1c shows a circuit that includes a dependent source, represented by the diamond

symbol. The arrow inside the diamond identifies the dependent source as a current source and indicates

the reference direction of the element current. The label “0.2v” represents the current of this dependent

source. This current is a product of two factors, 0.2 and v. The second factor, v, indicates that the current

of this dependent source is controlled by the voltage, v, across the 18-V resistor. The first factor, 0.2, is

the gain of this dependent source. The gain of this dependent source is the ratio of the controlled current,

0.2v, to the controlling voltage, v. This gain has units of A/V. Because this dependent source is a current

source and because a voltage controls the current, the dependent source is called a voltage-controlled

current source (VCCS).

Figure2.7-1dshows thecircuit fromFigure2.7-1c, usingadifferentpointofview. InFigure2.7-1d, an

opencircuithasbeenadded inparallelwith the18-V resistor.Nowwethinkof thecontrollingvoltagevas the

voltageacrossanopencircuit Figure2.7-1, rather than thevoltage across the18-V resistor itself. In thisway,

we can always treat the controlling voltage of a dependent source as the voltage across an open circuit.

We are now ready to categorize dependent source. Each dependent source consists of two parts:

the controlling part and the controlled part. The controlling part is either an open circuit or a short circuit.

The controlled part is either a voltage source or a current source. There are four types of dependent source

Table 2.7-1 Dependent Sources

DESCRIPTION SYMBOL

vc = 0

id

vd = ricic

+

–

+
–

vd = bvc

ic = 0 id

+

–

vc
+
–

id = gvcvd

+

–

ic = 0

+

–

vc

vc = 0 id = dicic

+

–

vd

+

–

Current-Controlled Voltage Source (CCVS)

r is the gain of the CCVS.

r has units of volts/ampere.

Voltage-Controlled Voltage Source (VCVS)

b is the gain of the VCVS.

b has units of volts/volt.

Voltage-Controlled Current Source (VCCS)

g is the gain of the VCCS.

g has units of amperes/volt.

Current-Controlled Current Source (CCCS)

d is the gain of the CCCS.

d has units of amperes/ampere.
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that correspond to the fourways of choosing a controlling part and a controlledpart. These four dependent

sources are called the voltage-controlled voltage source (VCVS), current-controlled voltage source

(CCVS), voltage-controlled current source (VCCS), and current-controlled current source (CCCS).

The symbols that represent dependent sources are shown in Table 2.7-1.

Consider the CCVS shown in Table 2.7-1. The controlling element is a short circuit. The element

current and voltage of the controlling element are denoted as ic and vc. The voltage across a short circuit

is zero, so vc ¼ 0. The short-circuit current, ic, is the controlling signal of this dependent source. The

controlled element is a voltage source. The element current and voltage of the controlled element are

denoted as id and vd. The voltage vd is controlled by ic:

vd ¼ ric

The constant r is called the gain of the CCVS. The current id, like the current in any voltage source, is

determined by the rest of the circuit.

Next, consider the VCVS shown in Table 2.7-1. The controlling element is an open circuit. The

current in an open circuit is zero, so ic ¼ 0. The open-circuit voltage, vc, is the controlling signal of this

dependent source. The controlled element is a voltage source. The voltage vd is controlled by vc:

vd ¼ bvc

The constant b is called the gain of the VCVS. The current id is determined by the rest of the circuit.

The controlling element of the VCCS shown in Table 2.7-1 is an open circuit. The current in this

open circuit is ic¼ 0. The open-circuit voltage, vc, is the controlling signal of this dependent source. The

controlled element is a current source. The current id is controlled by vc:

id ¼ gvc

The constant g is called the gain of the VCCS. The voltage vd, like the voltage across any current source,

is determined by the rest of the circuit.

The controlling element of the CCCS shown in Table 2.7-1 is a short circuit. The voltage across this

short circuit is vc ¼ 0. The short-circuit current, ic, is the controlling signal of this dependent source. The

controlled element is a current source. The current id is controlled by ic:

id ¼ dic

The constant d is called the gain of the CCCS. The voltage vd, like the voltage across any current source,

is determined by the rest of the circuit.

+– vin
+– vin

r

RBRB

RC vo

gmvbe

+

–
vbe

+

–
RC vo

+

–

p

r gmvbe

+

–
vbe p

cb

e

c

b

e

(b)(a)

(c) (d)

ic

ic

ib

ib

FIGURE 2.7-2 (a) A symbol for a transistor. (b) A model of the transistor. (c) A transistor amplifier. (d) A model of the

transistor amplifier.
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Figure 2.7-2 illustrates the use of dependent sources to model electronic devices. In certain

circumstances, the behavior of the transistor shown in Figure 2.7-2a can be represented using the

model shown in Figure 2.7-2b. This model consists of a dependent source and a resistor. The

controlling element of the dependent source is an open circuit connected across the resistor.

The controlling voltage is vbe. The gain of the dependent source is gm. The dependent source is

used in this model to represent a property of the transistor, namely, that the current ic is proportional to the

voltage vbe, that is, ic ¼ gmvbe

where gm has units of amperes/volt. Figures 2.7-2c and d illustrate the utility of this model.

Figure 2.7-2d is obtained from Figure 2.7-2c by replacing the transistor by the transistor model.

E X A M P L E 2 . 7 - 1 Power and Dependent Sources

Determine the power absorbed by the VCVS in Figure 2.7-3.

Solution
The VCVS consists of an open circuit and a controlled-voltage source. There is no current in the open circuit, so no

power is absorbed by the open circuit.

The voltage vc across the open circuit is the controlling signal of the VCVS. The voltmeter measures

vc to be

vc ¼ 2 V

The voltage of the controlled voltage source is

vd ¼ 2 vc ¼ 4 V

The ammeter measures the current in the controlled voltage source to be

id ¼ 1:5 A

The element current id and voltage vd adhere to the passive convention. Therefore,

p ¼ idvd ¼ 1:5ð Þ 4ð Þ ¼ 6W

is the power absorbed by the VCVS.

12 V

2 Ω

0.5 A 4 Ω+–

id

Voltmeter

+ 2. 0 0

Ammeter

+ 1. 5 0

vd = 2vc

+ –

+ vc –

FIGURE 2.7-3 A circuit containing a VCVS. The meters

indicate that the voltage of the controlling element is vc ¼ 2.0

volts and that the current of the controlled element is id ¼ 1.5

amperes.

Try it 

yourself 

in WileyPLUS
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EXERCISE 2.7-1 Find the power absorbed by the CCCS in Figure E 2.7-1.

Voltmeter

12 V

2 Ω 2 Ω

+

4 Ω+–
ic

vd

Ammeter

– 1. 2 0
+ 2 4. 0

id = 4ic

–

FIGURE E 2.7-1 A circuit containing a CCCS. The meters indicate that the current of the controlling element is

ic ¼ (1.2 amperes and that the voltage of the controlled element is vd ¼ 24 volts.

Hint: The controlling element of this dependent source is a short circuit. The voltage across a short

circuit is zero. Hence, the power absorbed by the controlling element is zero. How much power is

absorbed by the controlled element?

Answer: (115.2 watts are received by the CCCS. (The CCCS supplies þ115.2 watts to the rest of

the circuit.)

2.8 T r a n s d u c e r s

Transducers are devices that convert physical quantities to electrical quantities.

This section describes two transducers: potentiometers and temperature sensors.

Potentiometers convert position to resistance, and temperature sensors convert

temperature to current.

Figure 2.8-1a shows the symbol for the potentiometer. The potentiometer is a

resistor having a third contact, called the wiper, that slides along the resistor. Two

parameters, Rp and a, are needed to describe the potentiometer. The parameter Rp

specifies the potentiometer resistance (Rp > 0). The parameter a represents the

wiper position and takes values in the range 0 - a - 1. The values a ¼ 0 and a ¼ 1

correspond to the extreme positions of the wiper.

Figure 2.8-1b shows amodel for the potentiometer that consists of two resistors.

The resistances of these resistors depend on the potentiometer parameters Rp and a.

Frequently, the position of the wiper corresponds to the angular position of a

shaft connected to the potentiometer. Suppose y is the angle in degrees and 0 - y -
360. Then,

a ¼
y

360

Temperature sensors, such as the AD590 manufactured by Analog Devices, are current

sources having current proportional to absolute temperature. Figure 2.8-3a shows the symbol used

to represent the temperature sensor. Figure 2.8-3b shows the circuit model of the temperature

sensor. For the temperature sensor to operate properly, the branch voltage v must satisfy the

condition 4 volts - v - 30 volts

(1 – a)Rp

aRp

Rp

(b)(a)

FIGURE 2.8-1 (a) The symbol

and (b) a model for the

potentiometer.
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When this condition is satisfied, the current, i, in microamps, is numerically equal to

the temperature T, in degrees Kelvin. The phrase numerically equal indicates that the current

and temperature have the same value but different units. This relationship can be expressed as

i ¼ k . T

where k ¼ 1
mA
/K

, a constant associated with the sensor.

EXERCISE 2.8-1 For the potentiometer circuit of Figure 2.8-2, calculate the meter voltage, vm,

when y ¼ 45/, Rp ¼ 20 kV, and I ¼ 2 mA.

Answer: vm ¼ 5 V

EXERCISE 2.8-2 The voltage and current of an AD590 temperature sensor of Figure 2.8-3 are

10 V and 280 mA, respectively. Determine the measured temperature.

Answer: T ¼ 280/K, or approximately 6.85/C

E X A M P L E 2 . 8 - 1 Potentiometer Circuit

Figure 2.8-2a shows a circuit in which the voltage measured by the meter gives an indication of the angular

position of the shaft. In Figure 2.8-2b, the current source, the potentiometer, and the voltmeter have been

replaced by models of these devices. Analysis of Figure 2.8-2b yields

vm ¼ RpIa ¼
RpI

360
y

(1 – a)Rp

aRpRp
I

(b)(a)

I

Voltmeter

+ vm –
+

vm

–

FIGURE 2.8-2 (a) A circuit containing a

potentiometer. (b) An equivalent circuit containing a

model of the potentiometer.

Solving for the angle gives y ¼
360

RpI
vm

Suppose Rp ¼ 10 kV and I ¼ 1 mA. An angle of 163/ would cause an output of vm ¼ 4.53 V. A meter reading of

7.83 V would indicate that y ¼ 282/.

Try it 

yourself 

in WileyPLUS

+

v(t)

i(t)

–

+

v(t) i(t) = kT

–

AD590

(b)(a)
FIGURE 2.8-3 (a) The symbol and (b) a model for the temperature

sensor.
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2.9 Sw i t c h e s

Switches have two distinct states: open and closed. Ideally, a switch acts as a short circuit

when it is closed and as an open circuit when it is open.

Figures 2.9-1 and 2.9-2 show several types of switches. In each case, the time when

the switch changes state is indicated. Consider first the single-pole, single-throw (SPST) switches

shown in Figure 2.9-1. The switch in Figure 2.9-1a is initially open. This switch changes state,

becoming closed, at time t ¼ 0 s. When this switch is modeled as an ideal switch, it is treated like an

open circuit when t < 0 s and like a short circuit when t > 0 s. The ideal switch changes state

instantaneously. The switch in Figure 2.9-1b is initially closed. This switch changes state, becoming

open, at time t ¼ 0 s.

Next, consider the single-pole, double-throw (SPDT) switch shown in Figure 2.9-1a. This SPDT

switch acts like two SPST switches, one between terminals c and a, another between terminals c and b.

Before t ¼ 0 s, the switch between c and a is closed and the switch between c and b is open. At t ¼ 0 s,

both switches change state; that is, the switch between a and c opens, and the switch between c and b

closes. Once again, the ideal switches are modeled as open circuits when they are open and as short

circuits when they are closed.

In some applications, it makes a difference whether the switch between c and b closes before,

or after, the switch between c and a opens. Different symbols are used to represent these two types

of single-pole, double-throw switch. The break-before-make switch is manufactured so that the

switch between c and b closes after the switch between c and a opens. The symbol for the break-

before-make switch is shown in Figure 2.9-2a. The make-before-break switch is manufactured so

that the switch between c and b closes before the switch between c and a opens. The symbol for

the make-before-break switch is shown in Figure 2.9-2b. Remember: the switch transition from

terminal a to terminal b is assumed to take place instantaneously. This instantaneous transition is

an accurate model when the actual make-before-break transition is very fast compared to the circuit

time response.

(b)(a)

t = 0

Initially open

t = 0

Initially closed

FIGURE 2.9-1 SPST switches. (a) Initially open and (b)

initially closed.

(b)(a)

t = 0

Break before make

t = 0

Make before break

a a

b b

cc

FIGURE 2.9-2 SPDT switches. (a) Break before make

and (b) make before break.

E X A M P L E 2 . 9 - 1 Switches

Figure 2.9-3 illustrates the use of open and short circuits for modeling ideal switches. In Figure 2.9-3a, a circuit

containing three switches is shown. In Figure 2.9-3b, the circuit is shown as it would be modeled before t ¼ 0 s. The

two single-pole, single-throw switches change state at time t ¼ 0 s. Figure 2.9-3c shows the circuit as it would be

modeled when the time is between 0 s and 2 s. The single-pole, double-throw switch changes state at time t ¼ 2 s.

Figure 2.9-3d shows the circuit as it would be modeled after 2 s.
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EXERCISE 2.9-1 What is the value of the current i in Figure E 2.9-1 at time t ¼ 4 s?

Answer: i ¼ 0 amperes at t ¼ 4 s (both switches are open).

EXERCISE 2.9-2 What is the value of the voltage v in Figure E 2.9-2 at time t ¼ 4 s? At t ¼ 6 s?

Answer: v ¼ 6 volts at t ¼ 4 s, and v ¼ 0 volts at t ¼ 6 s.

2.10 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For

example, proposed solutions to design problems must be checked to confirm that all of the

+– 3 kΩ12 V
+–6 V

t = 5 s

i

t = 3 s

FIGURE E 2.9-1 A circuit with two SPST switches.

t = 5 s

2 mA

3 kΩ v

i

+

–

FIGURE E 2.9-2 A circuit with a make-before-break

SPDT switch.

Try it 

yourself 

in WileyPLUS

+– +–

5 kΩ 4 kΩ

12 kΩ 10 kΩ

8 kΩ12 V 6 V

t = 0 s

t = 2 s

t = 0 s

(a)

+– +–

5 kΩ 4 kΩ

12 kΩ 10 kΩ

8 kΩ12 V 6 V

(c)

+– +–

5 kΩ 4 kΩ

12 kΩ 10 kΩ

8 kΩ12 V 6 V

(b)

+– +–

5 kΩ 4 kΩ

12 kΩ 10 kΩ

8 kΩ12 V 6 V

(d)

FIGURE 2.9-3 (a)

A circuit containing

several switches.

(b) The equivalent

circuit for t - 0 s.

(c) The equivalent

circuit for 0< t < 2

s. (d ) The

equivalent circuit

for t > 2 s.
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specifications have been satisfied. In addition, computer output must be reviewed to guard against data-

entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,

occasionally just a little time remains at the end of an exam. It is useful to be able quickly to identify

those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of

problem discussed in this chapter.

E X A M P L E 2 . 1 0 - 1 How Can We Check Voltage and Current Values?

The meters in the circuit of Figure 2.10-1 indicate that v1 ¼ (4 V, v2 ¼ 8 V and that i ¼ 1 A. How can we

check that the values of v1, v2, and i have been measured correctly? Let’s check the values of v1, v2, and i in

two ways:

(a) Verify that the given values satisfy Ohm’s law for both resistors.

(b) Verify that the power supplied by the voltage source is equal to the power absorbed by the resistors.

Voltmeter

– 4

12 V

. 0

Ammeter

i

v1

v2

+

+

–

–

1 . 0 0

Voltmeter

8 . 0 0

+–
4 Ω

8 Ω

FIGURE 2.10-1 A circuit with meters.

Solution
(a) Consider the 8-V resistor. The current i flows through this resistor from top to bottom. Thus, the current i and

the voltage v2 adhere to the passive convention. Therefore, Ohm’s law requires that v2¼ 8i. The values v2¼ 8

V and i ¼ 1 A satisfy this equation.

Next, consider the 4-V resistor. The current i flows through this resistor from left to right. Thus, the

current i and the voltage v1 do not adhere to the passive convention. Therefore, Ohm’s law requires that

v1 ¼ 4((i). The values v1 ¼ (4 V and i ¼ 1 A satisfy this equation.

Thus, Ohm’s law is satisfied.

(b) The current i flows through the voltage source from bottom to top. Thus the current i and the voltage 12 V do

not adhere to the passive convention. Therefore, 12i ¼ 12(1) ¼ 12 W is the power supplied by the voltage

source. The power absorbed by the 4-V resistor is 4i
2 ¼ 4(12) ¼ 4 W, and the power absorbed by the 8-V

resistor is 8i2¼ 8(12)¼ 8W. The power supplied by the voltage source is indeed equal to the power absorbed

by the resistors.
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2 . 1 1 D E S I G N E X A M P L E Temperature Sensor

Currentscanbemeasuredeasily,usingammeters.A temperaturesensor, suchasAnalogDevices’AD590, canbeused

to measure temperature by converting temperature to current. Figure 2.11-1 shows a symbol used to represent a

temperature sensor. For this sensor to operate properly, the voltage v must satisfy the condition

4 volts - v - 30 volts

When this condition is satisfied, the current i, in mA, is numerically equal to the temperature T, in /K. The

phrase numerically equal indicates that the two variables have the same value but different units.

i ¼ k . T where k ¼ 1
mA
/K

The goal is to design a circuit using the AD590 to measure the temperature of a container of water. In addition

to the AD590 and an ammeter, several power supplies and an assortment of standard 2 percent resistors are

available. The power supplies are voltage sources. Power supplies having voltages of 10, 12, 15, 18, or 24 volts

are available.

Describe the Situation and the Assumptions
For the temperature transducer to operate properly, its element voltage must be between 4 volts and 30 volts. The

power supplies and resistors will be used to establish this voltage. An ammeter will be used to measure the current

in the temperature transducer.

The circuit must be able to measure temperatures in the range from 0/C to 100/C because water is a liquid at

these temperatures. Recall that the temperature in /C is equal to the temperature in /K minus 273/.

State the Goal
Use the power supplies and resistors to cause the voltage v of the temperature transducer to be between 4 volts

and 30 volts.

Use an ammeter to measure the current, i, in the temperature transducer.

Generate a Plan
Model the power supply as an ideal voltage source and the temperature transducer as an ideal current source. The

circuit shown in Figure 2.11-2a causes the voltage across the temperature transducer to be equal to the power

supply voltage. Because all of the available power supplies have voltages between 4 volts and 30 volts, any one of

the power supplies can be used. Notice that the resistors are not needed.

In Figure 2.11-2b, a short circuit has been added in a way that does not disturb the network. In Figure 2.11-2c,

this short circuit has been replaced with an (ideal) ammeter. Because the ammeter will measure the current in the

temperature transducer, the ammeter reading will be numerically equal to the temperature in /K.

+

v(t)

i(t)

–

AD590

FIGURE 2.11-1

A temperature sensor.
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Although any of the available power supplies is adequate to meet the specifications, there may still be an

advantage to choosing a particular power supply. For example, it is reasonable to choose the power supply that

causes the transducer to absorb as little power as possible.

Act on the Plan
The power absorbed by the transducer is

p ¼ v . i

where v is the power supply voltage. Choosing v as small as possible, 10 volts in this case, makes the power

absorbed by the temperature transducer as small as possible. Figure 2.11-3a shows the final design. Figure 2.11-3b

shows a graph that can be used to find the temperature corresponding to any ammeter current.

Verify the Proposed Solution
Let’s try an example. Suppose the temperature of the water is 80.6/F. This temperature is equal to 27/C or 300/K.

The current in the temperature sensor will be

i ¼ 1
mA
/K

$ %

300/K ¼ 300 mA

Next, suppose that the ammeter in Figure 2.11-3a reads 300 mA. A sensor current of 300 mA corresponds to a

temperature of

T ¼
300 mA

1
mA
/K

¼ 300/K ¼ 27/C ¼ 80:6/F

The graph in Figure 2.11-3b indicates that a sensor current of 300 mA does correspond to a temperature of 27/C.

This example shows that the circuit is working properly.

+

v(t)

i(t)

–
+–

+

v(t)

i(t)

–
+–

+

v(t)

i(t)

–
+–

(b)(a) (c)

Ammeter

Short

circuit

FIGURE 2.11-2 (a) Measuring temperature with a temperature sensor. (b) Adding a short circuit.

(c) Replacing the short circuit by an ammeter.

i(t)

10 V
+–

(b)(a)

Ammeter

273 373

Ammeter reading,    A

100

0

Temperature, °C

µ

FIGURE 2.11-3 (a) Final design of a circuit that measures temperature with a temperature sensor. (b) Graph

of temperature versus ammeter current.
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2.12 SUMMARY
The engineer uses models, called circuit elements, to repre-

sent the devices that make up a circuit. In this book, we

consider only linear elements or linear models of devices. A

device is linear if it satisfies the properties of both superpo-

sition and homogeneity.

The relationship between the reference directions of the

current and voltage of a circuit element is important. The

voltage polarity marks one terminal þ and the other (. The

element voltage and current adhere to the passive convention

if the current is directed from the terminal marked þ to the

terminal marked (.

Resistors are widely used as circuit elements. When the

resistor voltage and current adhere to the passive convention,

resistors obey Ohm’s law; the voltage across the terminals of

the resistor is related to the current into the positive terminal

as v ¼ Ri. The power delivered to a resistance is p ¼ i2R ¼
v
2=R watts.

An independent source provides a current or a voltage

independent of other circuit variables. The voltage of an

independent voltage source is specified, but the current is

not. Conversely, the current of an independent current source

is specified whereas the voltage is not. The voltages of

independent voltage sources and currents of independent

current sources are frequently used as the inputs to electric

circuits.

A dependent source provides a current (or a voltage) that is

dependent on another variable elsewhere in the circuit. The

constitutive equations of dependent sources are summarized

in Table 2.7-1.

The short circuit and open circuit are special cases of inde-

pendent sources. A short circuit is an ideal voltage source

having v(t) ¼ 0. The current in a short circuit is determined by

the rest of the circuit. An open circuit is an ideal current source

having i(t)¼ 0. The voltage across an open circuit is determined

by the rest of the circuit. Open circuits and short circuits can also

be described as special cases of resistors. A resistor with

resistance R ¼ 0 (G ¼ 1) is a short circuit. A resistor with

conductance G ¼ 0 (R ¼ 1) is an open circuit.

An ideal ammeter measures the current flowing through its

terminals and has zero voltage across its terminals. An ideal

voltmeter measures the voltage across its terminals and has

terminal current equal to zero. Ideal voltmeters act like open

circuits, and ideal ammeters act like short circuits.

Transducers are devices that convert physical quantities,

such as rotational position, to an electrical quantity such

as voltage. In this chapter, we describe two transducers:

potentiometers and temperature sensors.

Switches arewidely used in circuits to connect and disconnect

elements and circuits. An open switch is modeled as an open

circuit and a closed switch is modeled as a short circuit.

PROBLEMS

Section 2.2 Engineering and Linear Models

P 2.2-1 An element has voltage v and current i as shown in

Figure P 2.2-1a. Values of the current i and corresponding

voltage v have been tabulated as shown in Figure P 2.2-1b.

Determine whether the element is linear.

v, V i, A

–3

–4

0

12

32

60

–3

–2

0

2

4

6

–

+

v

i

(a) (b)

Figure P 2.2-1

P 2.2-2 A linear element has voltage v and current i as

shown in Figure P 2.2-2a. Values of the current i and corre-

sponding voltage v have been tabulated as shown in Figure P

2.2-2b. Represent the element by an equation that expresses v as

a function of i. This equation is amodel of the element. (a) Verify

that the model is linear. (b) Use the model to predict the value of

v corresponding to a current of i ¼ 40 mA. (c) Use the model to

predict the value of i corresponding to a voltage of v ¼ 3 V.

Hint: Plot the data. We expect the data points to lie on a straight

line. Obtain a linear model of the element by representing that

straight line by an equation.

v, V i, A

–3.6

2.4

6.0

–30

20

50

–

+

v

i

(a) (b)

Figure P 2.2-2

P 2.2-3 A linear element has voltage v and current i as shown

in Figure P 2.2-3a. Values of the current i and corresponding

voltage v have been tabulated as shown in Figure P 2.2-3b.

Represent the element by an equation that expresses v as a

Problem available in WileyPLUS at instructor’s discretion.
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function of i. This equation is a model of the element. (a) Verify

that the model is linear. (b) Use the model to predict the value of

v corresponding to a current of i ¼ 6 mA. (c) Use the model to

predict the value of i corresponding to a voltage of v ¼ 12 V.

Hint: Plot the data. We expect the data points to lie on a straight

line. Obtain a linear model of the element by representing that

straight line by an equation.

v, V i, mA

  3.078

  5.13

12.825

12

20

50

–

+

v

i

(a) (b)

Figure P 2.2-3

P 2.2-4 An element is represented by the relation between

current and voltage as

v ¼ 3i þ 5

Determine whether the element is linear.

P 2.2-5 The circuit shown in Figure P 2.2-5 consists of a

current source, a resistor, and element A. Consider three cases.

10 �  

+

−
0.4 A v iA

Figure P 2.2-5

(a) When element A is a 40-V resistor, described by i ¼ v / 40,

then the circuit is represented by

0:4 ¼
v

10
þ

v

40

Determine the values of v and i. Notice that the above

equation has a unique solution.

(b) When element A is a nonlinear resistor described by

i ¼ v2=2, then the circuit is represented by

0:4 ¼
v

10
þ

v 2

2

Determine the values of v and i. In this case, there are two

solutions of the above equation. Nonlinear circuits exhibit

more complicated behavior than linear circuits.

(c) When element A is a nonlinear resistor described by i ¼

0:8þ v 2

2
, then the circuit is described by

0:4 ¼
v

10
þ 0:8þ

v 2

2

Show that this equation has no solution. This result usually

indicates a modeling problem. At least one of the three

elements in the circuit has not been modeled accurately.

Section 2.4 Resistors

P 2.4-1 A current source and a resistor are connected in

series in the circuit shown in Figure P 2.4-1. Elements con-

nected in series have the same current, so i ¼ is in this circuit.

Suppose that is ¼ 3 A and R ¼ 7 V. Calculate the voltage v

across the resistor and the power absorbed by the resistor.

Answer: v ¼ 21 V and the resistor absorbs 63 W.

+

–

is v

i

R

Figure P 2.4-1

P 2.4-2 A current source and a resistor are connected in

series in the circuit shown in Figure P 2.4-1. Elements con-

nected in series have the same current, so i ¼ is in this circuit.

Suppose that i ¼ 3 mA and v ¼ 48 V. Calculate the resistance R

and the power absorbed by the resistor.

P 2.4-3 A voltage source and a resistor are connected in

parallel in the circuit shown in Figure P 2.4-3. Elements

connected in parallel have the same voltage, so v ¼ vs in

this circuit. Suppose that vs ¼ 10 V and R ¼ 5V. Calculate the

current i in the resistor and the power absorbed by the resistor.

Answer: i ¼ 2 A and the resistor absorbs 20 W.

+–
+

–

vs v

i

R

Figure P 2.4-3

P 2.4-4 A voltage source and a resistor are connected in

parallel in the circuit shown in Figure P 2.4-3. Elements

connected in parallel have the same voltage, so v ¼ vs in

this circuit. Suppose that vs ¼ 24 V and i ¼ 3 A. Calculate the

resistance R and the power absorbed by the resistor.

P 2.4-5 A voltage source and two resistors are connected

in parallel in the circuit shown in Figure P 2.4-5. Elements

connected in parallel have the same voltage, so v1 ¼ vs and

v2 ¼ vs in this circuit. Suppose that vs ¼ 150 V, R1 ¼ 50V, and

R2 ¼ 25V. Calculate the current in each resistor and the power

absorbed by each resistor.

Hint: Notice the reference directions of the resistor currents.

Answer: i1 ¼ 3 A and i2 ¼ (6 A. R1 absorbs 450 W and R2

absorbs 900 W.

+–
+

–

vs

+

–

v2v1 R2R1

i2i1

Figure P 2.4-5
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P 2.4-6 A current source and two resistors are connected

in series in the circuit shown in Figure P 2.4-6. Elements

connected in series have the same current, so i1 ¼ is and i2 ¼ is
in this circuit. Suppose that is ¼ 25 mA, R1 ¼ 4 V, and R2 ¼ 8

V. Calculate the voltage across each resistor and the power

absorbed by each resistor.

Hint: Notice the reference directions of the resistor voltages.

+

+–

–

is v2

v1

R1

R2

i2i1

Figure P 2.4-6

P 2.4-7 An electric heater is connected to a constant 250-V

source and absorbs 1000W. Subsequently, this heater is connected

to a constant 220-V source. What power does it absorb from the

220-V source? What is the resistance of the heater?

Hint: Model the electric heater as a resistor.

P 2.4-8 The portable lighting equipment for a mine is

located 100 meters from its dc supply source. The mine lights

use a total of 5 kW and operate at 120 V dc. Determine the

required cross-sectional area of the copper wires used to

connect the source to the mine lights if we require that the

power lost in the copper wires be less than or equal to 5 percent

of the power required by the mine lights.

Hint:Model both the lighting equipment and the wire as resistors.

P 2.4-9 The resistance of a practical resistor depends on

the nominal resistance and the resistance tolerance as follows:

Rnom 1(
t

100

" #

- R - Rnom 1þ
t

100

" #

where Rnom is the nominal resistance and t is the resistance

tolerance expressed as a percentage. For example, a 100-V,

2 percent resistor will have a resistance given by

98V - R - 102V

The circuit shown in Figure P 2.4-9 has one input, vs, and one

output, vo. The gain of this circuit is given by

gain ¼
vo

vs
¼

R2

R1 þ R2

Determine the range of possible values of the gain when R1 is

the resistance of a 100-V, 2 percent resistor and R2 is the

resistance of a 400-V, 5 percent resistor. Express the gain in

terms of a nominal gain and a gain tolerance.

R2

R1

vo
+–vs

i

+

–

Figure P 2.4-9

P 2.4-10 The voltage source shown in Figure P 2.4-10 is an

adjustable dc voltage source. In other words, the voltage vs is a

constant voltage, but the value of that constant can be adjusted.

The tabulated data were collected as follows. The voltage, vs,

was set to some value, and the voltages across the resistor, va
and vb, were measured and recorded. Next, the value of vs was

changed, and the voltages across the resistors were measured

again and recorded. This procedure was repeated several times.

(The values of vswere not recorded.) Determine the value of the

resistance, R.

+– vb

+

–

40 �
vs

va+ –

R

vb, Vva, V

11.75
7.5

5.625
10

4.375

7.05
4.5

3.375
6

2.625

Figure P 2.4-10

P 2.4-11 Consider the circuit shown in Figure P2.4-11.

(a) Suppose the current source supplies 3.125 W of power.

Determine the value of the resistance R.

(b) Suppose instead the resistance is R = 12 V. Determine

the value of the power supplied by the current source.

R

1.25 A
+– 20 V

Figure P 2.4-11

P 2.4-12 We will encounter “ac circuits” in Chapter 10.

Frequently we analyze ac circuits using “phasors” and “im-

pedances.” Phasors are complex numbers that represent cur-

rents and voltages in an ac circuit. Impedances are complex

numbers that describe ac circuit elements. (See Appendix B for

a discussion of complex numbers.) Figure P 2.4-11 shows a

circuit element in an ac circuit. I and V are complex numbers

representing the element current and voltage. Z is a complex

number describing the element itself. “Ohm’s law for ac

circuits” indicates that

V=Z I

(a) Suppose V= 12 ff 45/ V, I = B ff y A, and Z = 18 + j 8 O.

Determine the values of B and y.

(b) Suppose V = 48 ff 135/ V, I = 3 ff 15/ A, and Z = R + j X O.

Determine the values of R and X.

V+ –

Z I

Figure P 2.4-12
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Section 2.5 Independent Sources

P 2.5-1 A current source and a voltage source are

connected in parallel with a resistor as shown in Figure P

2.5-1. All of the elements connected in parallel have the same

voltage vs in this circuit. Suppose that vs ¼ 15 V, is ¼ 3 A, and R

¼ 5 V. (a) Calculate the current i in the resistor and the power

absorbed by the resistor. (b) Change the current source current

to is ¼ 5 A and recalculate the current i in the resistor and the

power absorbed by the resistor.

Answer: i ¼ 3 A and the resistor absorbs 45 W both when

is ¼ 3 A and when is ¼ 5 A.

+–is vs R

i

Figure P 2.5-1

P 2.5-2 A current source and a voltage source are

connected in series with a resistor as shown in Figure P 2.5-

2. All of the elements connected in series have the same current

is in this circuit. Suppose that vs ¼ 10 V, is ¼ 3 A, and R ¼ 5 V.

(a) Calculate the voltage v across the resistor and the power

absorbed by the resistor. (b) Change the voltage source voltage

to vs ¼ 5 V and recalculate the voltage, v, across the resistor and

the power absorbed by the resistor.

+ –

is

vs
+

–

vR

Figure P 2.5-2

P 2.5-3 The current source and voltage source in the

circuit shown in Figure P 2.5-3 are connected in parallel so that

they both have the same voltage, vs. The current source and

voltage source are also connected in series so that they both

have the same current, is. Suppose that vs ¼ 12 V and is ¼ 3 A.

Calculate the power supplied by each source.

Answer: The voltage source supplies (36 W, and the current

source supplies 36 W.

+–
–

is

is

vsvs

+

Figure P 2.5-3

P 2.5-4 The current source and voltage source in the

circuit shown in Figure P 2.5-4 are connected in parallel so that

they both have the same voltage, vs. The current source and

voltage source are also connected in series so that they both

have the same current, is. Suppose that vs ¼ 12 V and is ¼ 2 A.

Calculate the power supplied by each source.

+–
–

is

is

vsvs

+

Figure P 2.5-4

P 2.5-5

(a) Find the power supplied by the voltage source shown in

Figure P 2.5-5 when for t * 0 we have

v ¼ 2 cos t V

and

i ¼ 10 cos t mA

(b) Determine the energy supplied by this voltage source for

the period 0 - t - 1 s.

+–
v

i

Figure P 2.5-5

P 2.5-6 Figure P 2.5-6 shows a battery connected to a

load. The load in Figure P 2.5-6 might represent automobile

headlights, a digital camera, or a cell phone. The energy

supplied by the battery to load is given by

w ¼

Z t2

t1

vi dt

When the battery voltage is constant and the load resistance is

fixed, then the battery current will be constant and

w ¼ vi t2 ( t1ð Þ

The capacity of a battery is the product of the battery current

and time required to discharge the battery. Consequently, the

energy stored in a battery is equal to the product of the battery

voltage and the battery capacity. The capacity is usually given

with the units of Ampere-hours (Ah). A new 12-V battery

having a capacity of 800 mAh is connected to a load that draws

a current of 25 mA. (a) How long will it take for the load to

discharge the battery? (b) How much energy will be supplied to

the load during the time required to discharge the battery?

battery load

Rv

i

+
–

Figure P 2.5-6

Problems 47



Section 2.6 Voltmeters and Ammeters

P 2.6-1 For the circuit of Figure P 2.6-1:

(a) What is the value of the resistance R?

(b) How much power is delivered by the voltage source?

+–

Voltmeter

+ 5 . 0

Ammeter

– . 5 0

R

12 V A
1

2

Figure P 2.6-1

P 2.6-2 The current source in Figure P 2.6-2 supplies 40

W. What values do the meters in Figure P 2.6-2 read?

+–

Ammeter

+ –v

Voltmeter

4 Ω

12 V 2 A

i

Figure P 2.6-2

P 2.6-3 An ideal voltmeter is modeled as an open circuit. A more

realistic model of a voltmeter is a large resistance. Figure P 2.6-3a

shows a circuit with a voltmeter that measures the voltage vm. In

Figure P 2.6-3b, the voltmeter is replaced by the model of an ideal

voltmeter, an open circuit. Ideally, there is no current in the 100-V

resistor, and the voltmeter measures vmi = 12 V, the ideal value of

vm. In Figure P 2.6-3c, the voltmeter is modeled by the resistance

Rm. Now the voltage measured by the voltmeter is

vm ¼
Rm

Rm þ 100

$ %

12

Because Rm !1, the voltmeter becomes an ideal voltmeter, and

vm ! vmi ¼ l2 V . When Rm <1, the voltmeter is not ideal, and

vm < vmi. The difference between vm and vmi is a measurement

error caused by the fact that the voltmeter is not ideal.

(a) Express the measurement error that occurs when Rm ¼ 900

V as a percent of vmi.

(b) Determine the minimum value of Rm required to ensure that

the measurement error is smaller than 2 percent of vmi.

12 V

+

−

100 Ω

(a)

vm

Voltmeter

+–

12 V 12 V

+

−

100 Ω

(b)

vmi =+–

12 V

+

−

100 Ω

(c)

vmRm+–

Figure P 2.6-3

P 2.6-4 An ideal ammeter is modeled as a short circuit. A

more realistic model of an ammeter is a small resistance.

Figure P 2.6-4a shows a circuit with an ammeter that measures

the current im. In Figure P 2.6-4b, the ammeter is replaced by the

model of an ideal ammeter, a short circuit. Ideally, there is no

voltage across the 1-kV resistor, and the ammeter measures imi¼ 2

A, the ideal value of im. In Figure P 2.6-4c, the ammeter is modeled

by the resistance Rm. Now the current measured by the ammeter is

im ¼
1000

1000þ Rm

$ %

2

As Rm ! 0, the ammeter becomes an ideal ammeter, and im !
imi ¼ 2 A. When Rm > 0, the ammeter is not ideal, and im < imi.

The difference between im and imi is a measurement error

caused by the fact that the ammeter is not ideal.

(a) Express the measurement error that occurs when Rm ¼
10 V as a percent of imi.

(b) Determine the maximum value of Rm required to ensure

that the measurement error is smaller than 5 percent.

Ammeter

2 A 1 kΩ

im

(a)
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2 A 1 kΩ

imi = 2 A

(b)

2 A 1 kΩ

im

Rm

(c)

Figure P 2.6-4

P 2.6-5 The voltmeter in Figure P 2.6-5a measures the

voltage across the current source. Figure P 2.6-5b shows the

circuit after removing the voltmeter and labeling the voltage

measured by the voltmeter as vm. Also, the other element

voltages and currents are labeled in Figure P 2.6-5b.

+–

25 Ω

2 A12 V

Voltmeter

(a)

+–

iR

vm

+

–

25 Ω

2 A12 V

is

vR+ –

(b)

Figure P 2.6-5

Given that

12 ¼ vR þ vm and ( iR ¼ is ¼ 2 A

and

vR ¼ 25iR

(a) Determine the value of the voltage measured by the meter.

(b) Determine the power supplied by each element.

P 2.6-6 The ammeter in Figure P 2.6-6a measures the

current in the voltage source. Figure P 2.6-6b shows the circuit

after removing the ammeter and labeling the current measured

by the ammeter as im. Also, the other element voltages and

currents are labeled in Figure P 2.6-6b.

Given that
2þ im ¼ iR and vR ¼ vs ¼ 12 V

and
vR ¼ 25iR

(a) Determine the value of the current measured by the meter.

(b) Determine the power supplied by each element.

Ammeter

+– 25 Ω 2 A12 V

(a)

iR

vs

+

–

im

vR
+– 25 Ω 2 A12 V

+

–

(b)

Figure P 2.6-6

Section 2.7 Dependent Sources

P 2.7-1 The ammeter in the circuit shown in Figure P 2.7-

1 indicates that ia ¼ 2 A, and the voltmeter indicates that vb ¼
8 V. Determine the value of r, the gain of the CCVS.

Answer: r ¼ 4 V/A

Ammeter

2 . 0 0

Voltmeter

r ia

R

vb

+

–

8 . 0 0

+–

ia

vs
+
–

Figure P 2.7-1
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P 2.7-2 The ammeter in the circuit shown in Figure P 2.7-

2 indicates that ia ¼ 2 A, and the voltmeter indicates that vb ¼
8 V. Determine the value of g, the gain of the VCCS.

Answer: g ¼ 0.25 A/V

Ammeter

2 . 0 0

Voltmeter

vs vb

+

–

8 . 0 0

+–

ia

g vb

R1

R2

Figure P 2.7-2

P 2.7-3 The ammeters in the circuit shown in Figure P 2.7-

3 indicate that ia ¼ 32 A and ib ¼ 8 A. Determine the value of d,

the gain of the CCCS.

Answer: d ¼ 4 A/A

Ammeter

3 2 . 0

Ammeter

vs

8 . 0 0

+–

ia
ib

d ib

R

Figure P 2.7-3

P 2.7-4 The voltmeters in the circuit shown in Figure P

2.7-4 indicate that va ¼ 2 V and vb ¼ 8 V. Determine the value

of b, the gain of the VCVS.

Answer: b ¼ 4 V/V

2 . 0 0

Voltmeter

Voltmeter

vs

8 . 0 0

+–

va

vbb va

+

+

–

–

R

+
–

Figure P 2.7-4

P 2.7-5 The values of the current and voltage of each

circuit element are shown in Figure P 2.7-5.

Determine the values of the resistance R and of the gain

of the dependent source A.

3.5 A−2 A

12 V

− 2 V +

− 4 V +

−4 A

14 V10 V 1.5 A

2.5 A

R

ia = −0.5 A
A ia = 2 V

+

−

+ –

+– +–

Figure P 2.7-5

P 2.7-6 Find the power supplied by the VCCS in Figure P

2.7-6.

Answer: 17.6 watts are supplied by the VCCS. ((17.6 watts

are absorbed by the VCCS.)

–15.8 V

0.2 Ω

6.9 Ω+–

Voltmeter

– 2. 0 0

Voltmeter

2 Ω

+

+

vd

vc

+ 2. 2 0

id = 4vc

–

–

Figure P 2.7-6
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P 2.7-7 The circuit shown in Figure P 2.7-7 contains a

dependent source. Determine the value of the gain k of that

dependent source.

240 Ω

10 Ω va k va –10 V250 mA

200 mA 50 mA

++
–

–

+

–

Figure P 2.7-7

P 2.7-8 The circuit shown in Figure P 2.7-8 contains a

dependent source. Determine the value of the gain k of that

dependent source.

10 V

20 Ω

200 Ω

k ia 10 V20 V

450 mA

+
+ –

–
+–

ia

Figure P 2.7-8

P 2.7-9 The circuit shown in Figure P 2.7-9 contains a

dependent source. The gain of that dependent source is

k ¼ 25
V

A

Determine the value of the voltage vb.

120 Ω

5 Ω –1 V k ia vb250 mA

ia 50 mA

++
––

+

–

Figure P 2.7-9

P 2.7-10 The circuit shown in Figure P 2.7-10 contains a

dependent source. The gain of that dependent source is

k ¼ 90
mA

V
¼ 0:09

A

V

Determine the value of the current ib.

va

10 Ω

100 Ω

k va 5 V10 V

ib

+
+ –

–
+–

50 mA

Figure P 2.7-10

Section 2.8 Transducers

P 2.8-1 For the potentiometer circuit of Figure 2.8-2, the

current source current and potentiometer resistance are 1.1 mA

and 100 kV, respectively. Calculate the required angle, y, so

that the measured voltage is 23 V.

P 2.8-2 An AD590 sensor has an associated constant k ¼ 1 mA
/

K
.

The sensor has a voltage v ¼ 20 V; and the measured current, i

(t), as shown in Figure 2.8-3, is 4 mA < i < 13 mA in a

laboratory setting. Find the range of measured temperature.

Section 2.9 Switches

P 2.9-1 Determine the current i at t ¼ 1 s and at t ¼ 4 s for

the circuit of Figure P 2.9-1.

+– 5 kΩ15 V
+– 10 V

t = 3 s

i

t = 2 s

Figure P 2.9-1

P 2.9-2 Determine the voltage, v, at t ¼ 1 s and at t ¼ 4 s

for the circuit shown in Figure P 2.9-2.

5 kΩ
1 mA 2 mA

t = 3 s

t = 2 s+

–

v

Figure P 2.9-2

P 2.9-3 Ideally, an open switch is modeled as an open circuit

and a closed switch is modeled as a closed circuit. More

realistically, an open switch is modeled as a large resistance,

and a closed switch is modeled as a small resistance.

Figure P 2.9-3a shows a circuit with a switch. In Figure

P 2.9-3b, the switch has been replaced with a resistance. In Figure

P 2.9-3b, the voltage v is given by

v ¼
100

Rs þ 100

$ %

12

Determine the value of v for each of the following cases.

(a) The switch is closed and Rs ¼ 0 (a short circuit).

(b) The switch is closed and Rs ¼ 5 V.

(c) The switch is open and Rs ¼ 1 (an open circuit).

(d) The switch is open and Rs ¼ 10 kV.
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v100 Ω 100 Ω12 V 12 V

(a) (b)

+
−

+

−

v
+
−

+

−

Rs

Figure P 2.9-3

Section 2-10 How CanWe Check . . . ?

P 2.10-1 The circuit shown in Figure P 2.10-1 is used to test

the CCVS. Your lab partner claims that this measurement

shows that the gain of the CCVS is (20 V/A instead of þ20

V/A. Do you agree? Justify your answer.

4 0 . 0

VoltmeterAmmeter

– 2 . 0

vs is
vo

vo

is

+

–

R

CCVS

= 20
V

A

+–

Figure P 2.10-1

P 2.10-2 The circuit of Figure P 2.10-2 is used to measure

the current in the resistor. Once this current is known, the resistance

can be calculated as R ¼ vs

i
. The circuit is constructed using a

voltage source with vs ¼ 12 V and a 25-V, 1=2-W resistor.

After a puff of smoke and an unpleasant smell, the ammeter

indicates that i¼ 0 A. The resistor must be bad. You have more 25-

V, 1=2-W resistors. Should you try another resistor? Justify your

answer.

i

Ammeter

vs

0 . 0 0

+–

R

Figure P 2.10-2

Hint: 1=2-W resistors are able to safely dissipate one 1=2 W

of power. These resistors may fail if required to dissipate

more than 1=2 watt of power.

Design Problems

DP 2-1 Specify the resistance R in Figure DP 2-1 so that

both of the following conditions are satisfied:

1. i > 40 mA.

2. The power absorbed by the resistor is less than 0.5 W.

+–

i

R10 V

Figure DP 2-1

DP 2-2 Specify the resistance R in Figure DP 2-2 so that both of

the following conditions are satisfied:

1. v > 40 V.

2. The power absorbed by the resistor is less than 15 W.

R2 A v

+

–

Figure DP 2-2

Hint: There is no guarantee that specifications can always be

satisfied.

DP 2-3 Resistors are given a power rating. For example, resis-

tors are available with ratings of 1=8 W, 1=4 W, 1=2 W, and 1 W.

A 1=2-W resistor is able to safely dissipate 1=2 W of

power, indefinitely. Resistors with larger power ratings are

more expensive and bulkier than resistors with lower power

ratings. Good engineering practice requires that resistor power

ratings be specified to be as large as, but not larger than,

necessary.

Consider the circuit shown in Figure DP 2-3. The values

of the resistances are

R1 ¼ 1000 V; R2 ¼ 2000 V; and R3 ¼ 4000 V

The value of the current source current is

is ¼ 30 mA

Specify the power rating for each resistor.

R1 R2 R3

ir = is

is

Figure DP 2-3
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CHAPTER 3 Resistive
Circuits

I N T H I S C H A P T E R

3.1 Introduction

3.2 Kirchhoff’s Laws

3.3 Series Resistors

and Voltage

Division

3.4 Parallel Resistors and

Current Division

3.5 Series Voltage

Sources and

Parallel Current

Sources

3.6 Circuit Analysis

3.7 Analyzing

Resistive Circuits

Using

MATLAB

3.8 How Can We

Check . . . ?

3.9 DESIGN

EXAMPLE—

Adjustable Voltage

Source

3.10 Summary

Problems

Design Problems

3.1 I n t r o d u c t i o n

In this chapter, we will do the following:

! Write equations using Kirchhoff’s laws.

Not surprisingly, the behavior of an electric circuit is determined both by the types of

elements that comprise the circuit and by the way those elements are connected together. The

constitutive equations describe the elements themselves, and Kirchhoff’s laws describe the way the

elements are connected to each other to form the circuit.

! Analyze simple electric circuits, using only Kirchhoff’s laws and the constitutive equations of the

circuit elements.

! Analyze two very common circuit configurations: series resistors and parallel resistors.

We will see that series resistors act like a “voltage divider,” and parallel resistors act like a “current

divider.” Also, series resistors and parallel resistors provide our first examples of an “equivalent circuit.”

Figure 3.1-1 illustrates this important concept. Here, a circuit has been partitioned into two parts, A and B.

Replacing B by an equivalent circuit, Beq, does not change the current or voltage of any circuit element

in part A. It is in this sense that Beq is equivalent toB.Wewill see how to obtain an equivalent circuit when

part B consists either of series resistors or of parallel resistors.

! Determine equivalent circuits for series voltage sources and parallel current sources.

! Determine the equivalent resistance of a resistive circuit.

Often, circuits consisting entirely of resistors can be reduced to a single equivalent resistor by

repeatedly replacing series and/or parallel resistors by equivalent resistors.

A AB Beq

(b)(a)

FIGURE 3.1-1 Replacing B by

an equivalent circuit Beq does not

change the current or voltage of any

circuit element in A. 53



3.2 K i r c h h o f f ’ s L aw s

An electric circuit consists of circuit elements that are connected together. The places where the

elements are connected to each other are called nodes. Figure 3.2-1a shows an electric circuit

that consists of six elements connected together at four nodes. It is common practice to draw electric

circuits using straight lines and to position the elements horizontally or vertically as shown in Figure

3.2-1b.

The circuit is shown again in Figure 3.2-1c, this time emphasizing the nodes. Notice that

redrawing the circuit, using straight lines and horizontal and vertical elements, has changed the way

that the nodes are represented. In Figure 3.2-1a, nodes are represented as points. In Figures 3.2-1b,c,

nodes are represented using both points and straight-line segments.

The same circuit can be drawn in several ways. One drawing of a circuit might look much

different from another drawing of the same circuit. How can we tell when two circuit drawings represent

the same circuit? Informally, we say that two circuit drawings represent the same circuit if

i1 i2 i3

i6

(a)

(b)

(c)

i5

i4

v1 v2 v3

v4

1 2 3 5

6

4

v6

v5

i1 i2 i3
i6

i5

i4

v1 v2 v3

v4

v6

v5

i1 i2 i3
i6

i5

i4

v1 v2 v3

v4

v6

v5

a

b

c

d

FIGURE 3.2-1 (a) An electric

circuit. (b) The same circuit,

redrawn using straight lines and

horizontal and vertical elements.

(c) The circuit after labeling the

nodes and elements.
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corresponding elements are connected to corresponding nodes. More formally, we say that circuit

drawings A and B represent the same circuit when the following three conditions are met.

1. There is a one-to-one correspondence between the nodes of drawing A and the nodes of drawing B.

(A one-to-one correspondence is a matching. In this one-to-one correspondence, each node in

drawing A is matched to exactly one node of drawing B and vice versa. The position of the nodes is

not important.)

2. There is a one-to-one correspondence between the elements of drawing A and the elements of

drawing B.

3. Corresponding elements are connected to corresponding nodes.

E X A M P L E 3 . 2 - 1 Different Drawings of the Same Circuit

Figure 3.2-2 shows four circuit drawings. Which of these drawings, if any, represent the same circuit as the circuit

drawing in Figure 3.2-1c?

(a)

r

u

d c
5

6 4

1

3

2

ab

s t

v d

c

6

5

4

3 2 1

a

b

(b)

(c) (d)
FIGURE 3.2-2 Four circuit drawings.
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In 1847, Gustav Robert Kirchhoff, a professor at the University of Berlin, formulated

two important laws that provide the foundation for analysis of electric circuits. These laws are

referred to as Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL) in his honor.

Kirchhoff’s laws are a consequence of conservation of charge and conservation of energy.

Gustav Robert Kirchhoff is pictured in Figure 3.2-3.

Kirchhoff’s current law states that the algebraic sum of the currents entering any node is

identically zero for all instants of time.

Kirchhoff’s current law (KCL): The algebraic sum of the currents into a node at

any instant is zero.

The phrase algebraic sum indicates that we must take reference directions into account as

we add up the currents of elements connected to a particular node. One way to take

reference directions into account is to use a plus sign when the current is directed away from

the node and a minus sign when the current is directed toward the node. For example,

consider the circuit shown in Figure 3.2-1c. Four elements of this circuit—elements 1, 2, 3,

and 4—are connected to node a. By Kirchhoff’s current law, the algebraic sum of the

element currents i1, i2, i3, and i4 must be zero. Currents i2 and i3 are directed away from

node a, so we will use a plus sign for i2 and i3. In contrast, currents i1 and i4 are directed toward node

a, so we will use a minus sign for i1 and i4. The KCL equation for node a of Figure 3.2-1c is

"i1 þ i2 þ i3 " i4 ¼ 0 (3.2-1)

An alternate way of obtaining the algebraic sum of the currents into a node is to set the sum of all

the currents directed away from the node equal to the sum of all the currents directed toward that node.

Using this technique, we find that the KCL equation for node a of Figure 3.2-1c is

i2 þ i3 ¼ i1 þ i4 (3.2-2)

Clearly, Eqs. 3.2-1 and 3.2-2 are equivalent.

Solution
The circuit drawing shown in Figure 3.2-2a has five nodes, labeled r, s, t, u, and v. The circuit drawing in Figure

3.2-1c has four nodes. Because the two drawings have different numbers of nodes, there cannot be a one-to-one

correspondence between the nodes of the two drawings. Hence, these drawings represent different circuits.

The circuit drawing shown in Figure 3.2-2b has four nodes and six elements, the same numbers of nodes and

elements as the circuit drawing in Figure 3.2-1c. The nodes in Figure 3.2-2b have been labeled in the same way as the

corresponding nodes in Figure 3.2-1c. For example, node c in Figure 3.2-2b corresponds to node c in Figure 3.2-1c.

The elements in Figure 3.2-2b have been labeled in the same way as the corresponding elements in Figure 3.2-1c. For

example, element 5 in Figure 3.2-2b corresponds to element 5 in Figure 3.2-1c. Corresponding elements are indeed

connected to corresponding nodes. For example, element 2 is connected to nodes a and b, in both Figure 3.2-2b and in

Figure 3.2-1c. Consequently, Figure 3.2-2b and Figure 3.2-1c represent the same circuit.

The circuit drawing shown in Figure 3.2-2c has four nodes and six elements, the same number of nodes and

elements as the circuit drawing in Figure 3.2-1c. The nodes and elements in Figure 3.2-2c have been labeled in the

same way as the corresponding nodes and elements in Figure 3.2-1c. Corresponding elements are indeed connected

to corresponding nodes. Therefore, Figure 3.2-2c and Figure 3.2-1c represent the same circuit.

The circuit drawing shown in Figure 3.2-2d has four nodes and six elements, the same numbers of nodes and

elements as the circuit drawing in Figure 3.2-1c. However, the nodes and elements of Figure 3.2-2d cannot be

labeled so that corresponding elements of Figure 3.2-1c are connected to corresponding nodes. (For example, in

Figure 3.2-1c, three elements are connected between the same pair of nodes, a and b. That does not happen in

Figure 3.2-2d.) Consequently, Figure 3.2-2d and Figure 3.2-1c represent different circuits.

FIGURE 3.2-3 Gustav

Robert Kirchhoff (1824–

1887). Kirchhoff stated two

laws in 1847 regarding the

current and voltage in an

electrical circuit.

# bilwissedition Ltd. & Co.

KG=Alamy
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Similarly, the Kirchhoff’s current law equation for node b of Figure 3.2-1c is

i1 ¼ i2 þ i3 þ i6

Before we can state Kirchhoff’s voltage law, we need the definition of a loop. A loop is a closed

path through a circuit that does not encounter any intermediate node more than once. For example,

starting at node a in Figure 3.2-1c, we can move through element 4 to node c, then through element 5 to

node d, through element 6 to node b, and finally through element 3 back to node a. We have a closed

path, and we did not encounter any of the intermediate nodes—b, c, or d—more than once.

Consequently, elements 3, 4, 5, and 6 comprise a loop. Similarly, elements 1, 4, 5, and 6 comprise

a loop of the circuit shown in Figure 3.2-1c. Elements 1 and 3 comprise yet another loop of this circuit.

The circuit has three other loops: elements 1 and 2, elements 2 and 3, and elements 2, 4, 5, and 6.

We are now ready to state Kirchhoff’s voltage law.

Kirchhoff’s voltage law (KVL): The algebraic sum of the voltages around any loop in a

circuit is identically zero for all time.

The phrase algebraic sum indicates that we must take polarity into account as we add up the voltages of

elements that comprise a loop. One way to take polarity into account is to move around the loop in the

clockwise direction while observing the polarities of the element voltages. We write the voltage with a

plus sign when we encounter theþ of the voltage polarity before the". In contrast, we write the voltage

with a minus sign when we encounter the" of the voltage polarity before theþ. For example, consider

the circuit shown in Figure 3.2-1c. Elements 3, 4, 5, and 6 comprise a loop of the circuit. By Kirchhoff’s

voltage law, the algebraic sum of the element voltages v3, v4, v5, and v6 must be zero. As we move

around the loop in the clockwise direction, we encounter the þ of v4 before the ", the " of v5 before

the þ, the " of v6 before the þ, and the " of v3 before the þ. Consequently, we use a minus sign for

v3, v5, and v6 and a plus sign for v4. The KCL equation for this loop of Figure 3.2-1c is

v4 " v5 " v6 " v3 ¼ 0

Similarly, the Kirchhoff’s voltage law equation for the loop consisting of elements 1, 4, 5, and 6 is

v4 " v5 " v6 þ v1 ¼ 0

The Kirchhoff’s voltage law equation for the loop consisting of elements 1 and 2 is

"v2 þ v1 ¼ 0

E X A M P L E 3 . 2 - 2 Kirchhoff’s Laws INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 3.2-4a. Determine the power supplied by element C and the power received by

element D.

Solution
Figure 3.2-4a provides a value for the current in element C but not for the voltage v across element C. The voltage and

current of element C given in Figure 3.2-4a adhere to the passive convention, so the product of this voltage and current

is the power received by element C. Figure 3.2-4a provides a value for the voltage across element D but not for the

current i in element D. The voltage and current of element D given in Figure 3.2-4a do not adhere to the passive

convention, so the product of this voltage and current is the power supplied by element D.

We need to determine the voltage v across elementC and the current i in elementD.Wewill useKirchhoff’s laws to

determine values of v and i. First, we identify and label the nodes of the circuit as shown in Figure 3.2-4b.

Try it 

yourself 

in WileyPLUS
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Apply Kirchhoff’s voltage law (KVL) to the loop consisting of elements C, D, and B to get

"v " "4ð Þ " 6 ¼ 0 ) v ¼ "2 V

The value of the current in element C in Figure 3.2-4b is 7 A. The voltage and current of element C given in Figure

3.2-4b adhere to the passive convention, so
pC ¼ v 7ð Þ ¼ (" 2)(7) ¼ "14W

is the power received by element C. Therefore, element C supplies 14 W.

Next, apply Kirchhoff’s current law (KCL) at node b to get

7þ "10ð Þ þ i ¼ 0 ) i ¼ 3 A

The value of the voltage across element D in Figure 3.2-4b is"4 V. The voltage and current of element D given in

Figure 3.2-4b do not adhere to the passive convention, so the power supplied by element D is given by

pD ¼ "4Þi ¼ "4ð Þð3ð Þ ¼ "12W

Therefore, element D receives 12 W.

(a)

A6 V 6 V3 A

a b c

–4 A

7 A

4 V

–10 A

10 A0 V–4 V

+

–

+

–

–

+

–

+

–++–

B D F

C E

(b)

v

A6 V 6 V3 A –4 A

7 A

4 V

–10 A

10 A0 V–4 V

+

–

+

–

–

+

–

+

–++–

B D i F

C E
v

d

i

FIGURE 3.2-4 (a) The circuit considered in Example

3.2-2 and (b) the circuit redrawn to emphasize the

nodes.

E X A M P L E 3 . 2 - 3 Ohm’s and Kirchhoff’s Laws

Consider the circuit shown in Figure 3.2-5. Notice that the passive convention was used to assign reference

directions to the resistor voltages and currents. This anticipates using Ohm’s law. Find each current and each

voltage when R1¼ 8 V, v2¼"10 V, i3¼ 2 A, and R3¼ 1 V. Also, determine the resistance R2.

Solution
The sum of the currents entering node a is

i1 " i2 " i3 ¼ 0

Try it 

yourself 

in WileyPLUS
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Using Ohm’s law for R3, we find that

v3 ¼ R3i3 ¼ 1(2) ¼ 2 V

Kirchhoff’s voltage law for the bottom loop incorporating v1, v3,

and the 10-V source is

"10þ v1 þ v3 ¼ 0

Therefore; v1 ¼ 10" v3 ¼ 8 V

Ohm’s law for the resistor R1 is

v1 ¼ R1i1

or i1 ¼ v1=R1 ¼ 8=8 ¼ 1 A

Next, apply Kirchhoff’s current law at node a to get

i2 ¼ i1 " i3 ¼ 1" 2 ¼ "1 A

We can now find the resistance R2 from

v2 ¼ R2i2

or R2 ¼ v2=i2 ¼ "10="1 ¼ 10 V

R2

i2

i1

i3

R1

R3

–

12 V

10 V

–

–

+

+
a

+

+
–

+
–

v1

v2

v3

FIGURE 3.2-5 Circuit with two

constant-voltage sources.

E X A M P L E 3 . 2 - 4 Ohm’s and

Kirchhoff’s Laws

INTERACT IVE EXAMPLE

Determine the value of the current, in amps, measured by the ammeter in Figure 3.2-6a.

Solution
An ideal ammeter is equivalent to a short circuit. The current measured by the ammeter is the current in the short

circuit. Figure 3.2-6b shows the circuit after replacing the ammeter by the equivalent short circuit.

The circuit has been redrawn in Figure 3.2-7 to label the nodes of the circuit. This circuit consists of a voltage

source, a dependent current source, two resistors, and two short circuits. One of the short circuits is the controlling

element of the CCCS, and the other short circuit is a model of the ammeter.

12 V
+
–

+
–12 V

ia
3ia

ia
3ia

im

im

Ammeter
4 Ω 2 Ω

4 Ω 2 Ω

(a)

(b)
FIGURE 3.2-6 (a) A circuit with dependent source and an

ammeter. (b) The equivalent circuit after replacing the ammeter

by a short circuit.

12 V
+

– + + –

– iaia
3ia

2im4ia im

imia 4 Ω b
a

d
e

c
2 Ω

FIGURE 3.2-7 The circuit of Figure 3.2-6 after labeling the

nodes and some element currents and voltages.

Try it 

yourself 

in WileyPLUS
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Applying KCL twice, once at node d and again at node a, shows that the current in the voltage source and the

current in the 4-V resistor are both equal to ia. These currents are labeled in Figure 3.2-7. Applying KCL again, at

node c, shows that the current in the 2-V resistor is equal to im. This current is labeled in Figure 3.2-7.

Next, Ohm’s law tells us that the voltage across the 4-V resistor is equal to 4ia and that the voltage across the

2-V resistor is equal to 2im. Both of these voltages are labeled in Figure 3.2-7.

Applying KCL at node b gives
"ia " 3ia " im ¼ 0

Applying KVL to closed path a-b-c-e-d-a gives

0 ¼ "4ia þ 2im " 12 ¼ "4 "
1

4
im

! "

þ 2im " 12 ¼ 3im " 12

Finally, solving this equation gives

im ¼ 4 A

E X A M P L E 3 . 2 - 5 Ohm’s and

Kirchhoff’s Laws

INTERACT IVE EXAMPLE

Determine the value of the voltage, in volts, measured by the voltmeter in Figure 3.2-8a.

Solution
An ideal voltmeter is equivalent to an open circuit. The voltage measured by the voltmeter is the voltage across the

open circuit. Figure 3.2-8b shows the circuit after replacing the voltmeter by the equivalent open circuit.

The circuit has been redrawn in Figure 3.2-9 to label the nodes of the circuit. This circuit consists of a voltage

source, a dependent voltage source, two resistors, a short circuit, and an open circuit. The short circuit is the

controlling element of the CCVS, and the open circuit is a model of the voltmeter.

Applying KCL twice, once at node d and again at node a, shows that the current in the voltage source and the

current in the 4-V resistor are both equal to ia. These currents are labeled in Figure 3.2-9. Applying KCL again,

12 V
+
–

+

–

+
–

+

–
12 V

ia
3ia

ia
3ia

Voltmeter
4 Ω 5 Ω

4 Ω 5 Ω

(a)

(b)

vm

vm

+

–

+

–

FIGURE 3.2-8 (a) A circuit with dependent source

and a voltmeter. (b) The equivalent circuit after replacing

the voltmeter by an open circuit.

12 V

0 V

0 A
b

a

d
e

f

c

–++–

3ia

4 Ω 5 Ω

vm

+

–

+
–

+

–iaia

ia
4ia

FIGURE 3.2-9 The circuit of Figure 3.2-8b after labeling the

nodes and some element currents and voltages.

Try it 

yourself 

in WileyPLUS
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at node c, shows that the current in the 5-V resistor is equal to the current in the open circuit, that is, zero. This

current is labeled in Figure 3.2-9. Ohm’s law tells us that the voltage across the 5-V resistor is also equal to zero.

Next, applying KVL to the closed path b-c-f-e-b gives vm¼ 3ia.

Applying KVL to the closed path a-b-e-d-a gives

"4ia þ 3ia " 12 ¼ 0

so ia ¼ "12 A

Finally vm ¼ 3ia ¼ 3 "12ð Þ ¼ "36 V

E X A M P L E 3 . 2 - 6 Kirchhoff’s Laws

with Time-Varying

Currents and Voltages

INTERACT IVE EXAMPLE

The circuit shown in Figure 3.2-10 contains a circuit element called a capacitor. We will learn more about

capacitors in Chapter 7. The only thing we will need to know about the capacitor in this example is its voltage, vc(t),

and that will be given.

10 Ω 25 Ω

+–vs(t ) 0.005 F 15 Ω

+ –vo(t )

i s(t )

+

–
vc(t )

FIGURE 3.2-10 The circuit considered in Example 3.2-6.

In this example we will determine the voltage, vo(t), across the 25-V resistor and the voltage source current,

is(t), for each of the following cases:

(a) The voltage source voltage is vs(t) = 50 V and the capacitor voltage is

vc tð Þ ¼ 40" 40 e"25tV:

(b) The voltage source voltage is vs(t) = 10 cos(8t) V and the capacitor voltage is

vc tð Þ ¼ 7:62 cos 8t " 17:7
(# $

V:
Notice that vs(t) and vc(t) are not constant functions of time.

Solution
Let’s label the circuit as shown in Figure 3.2-11. We’ve labeled the nodes of the circuit in Figure 3.2-11. Also,

we’ve labeled the voltage and current of each circuit element. In anticipation of using Ohm’s Law, we’ve labeled

the current and voltage of each resistor to adhere to the passive convention.

+–vs(t )
i s(t ) +

–
vc(t )

+ –vo(t )i2(t )

25 Ω

+

–
v3(t )

i3(t )

15 Ω

10 Ω

i1(t ) + –v1(t )

ic(t )
0.005 F

a
b

c

d FIGURE 3.2-11 The circuit from Figure 3.2-10 after labeling the nodes

and the element voltages and currents.

Try it 

yourself 

in WileyPLUS
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Solution
Let’s see what information we can obtain using Ohm’s law and Kirchhoff’s laws. Applying Ohm’s law to each of

the resistors gives

v 1 tð Þ ¼ 10 i 1 tð Þ; v o tð Þ ¼ 25 i2 tð Þ and v 3 tð Þ ¼ 15 i 3 tð Þ (3.2-3)

Apply KCL at node a and also at node c to get

i s tð Þ ¼ i 1 tð Þ and i 2 tð Þ ¼ i 3 tð Þ (3.2-4)

Apply KVL to the loop consisting of the voltage source, 10-V resistor, and the capacitor to get

v s tð Þ ¼ v 1 tð Þ þ v c tð Þ (3.2-5)

Apply KVL to the loop consisting of the capacitor, 25-V resistor, and the 15-V resistor to get

v c tð Þ ¼ v o tð Þ þ v 3 tð Þ (3.2-6)

Doing a little algebra, we get

i s tð Þ ¼ i 1 tð Þ ¼
v 1 tð Þ

10
¼

v s tð Þ " v c tð Þ

10
(3.2-7)

Recalling that i2(t) = i3(t), we do the following algebra

v c tð Þ ¼ v o tð Þ þ v 3 tð Þ ¼ 25 i 2 tð Þ þ 15 i 3 tð Þ ¼ 40 i 2 tð Þ (3.2-8)

Combining Eqs. 3.2-8 and 3.2-3 gives

v o tð Þ ¼ 25 i2 tð Þ ¼ 25
v c tð Þ

40
¼

5

8
v c tð Þ (3.2-9)

In summary v o tð Þ ¼
5

8
v c tð Þ and i s tð Þ ¼

v s tð Þ " v c tð Þ

10
(3.2-10)

These equations prepare us to consider case (a) and case (b) of this example.

In case (a) v o tð Þ ¼
5

8
40" 40e"25t
# $

¼ 25 1" e"25t
# $

V

and i s tð Þ ¼
50" 40" 40e"25tð Þ

10
¼ 1þ 4e"25t A

In case (b) v o tð Þ ¼
5

8

! "

7:62 cos 8t " 17:7(ð Þ ¼ 4:76 cos 8t " 17:7(ð ÞV

and i s tð Þ ¼
10 cos 8tð Þ " 7:62 cos 8t " 17:7(ð Þ

10
A (3.2-11)

We can simplify this expression for is(t) using trigonometric identities, but that process is somewhat tedious.

In Chapter 10 we’ll use complex arithmetic to simplify Eq. 3.2-11. The result is

i s tð Þ ¼ 0:349cos (8t þ 40() A
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EXERCISE 3.2-1 Determine the values of i3, i4, i6, v2, v4, and v6 in Figure E 3.2-1.

Answer: i3¼"3 A, i4¼ 3 A, i6¼ 4 A, v2¼"3 V, v4¼"6 V, v6¼ 6 V

+

–

+

+

+

+

–

–

–

–

+

–

3 V A B

D

C

E Fv6v2

v4

6 V2 A 1 A 1 A

3 V

i3

i4
i6

FIGURE E 3.2-1

3.3 S e r i e s R e s i s t o r s a n d V o l t a g e D i v i s i o n

Let us consider a single-loop circuit, as shown in Figure 3.3-1. In anticipation of using Ohm’s

law, the passive convention has been used to assign reference directions to resistor voltages

and currents.

The connection of resistors in Figure 3.3-1 is said to be a series connection because

all the elements carry the same current. To identify a pair of series elements, we look for

two elements connected to a single node that has no other elements connected to it. Notice,

for example, that resistors R1 and R2 are both connected to node b and that no other

circuit elements are connected to node b. Consequently, i1 ¼ i2, so both resistors have the

same current. A similar argument shows that resistors R2 and R3 are also connected in

series. Noticing that R2 is connected in series with both R1 and R3, we say that all three

resistors are connected in series. The order of series resistors is not important. For example,

the voltages and currents of the three resistors in Figure 3.3-1 will not change if we

interchange the positions R2 and R3.

Using KCL at each node of the circuit in Figure 3.3-1, we obtain

a : is ¼ i1
b: i1 ¼ i2
c : i2 ¼ i3
d: i3 ¼ is

Consequently, is ¼ i1 ¼ i2 ¼ i3

To determine i1, we use KVL around the loop to obtain

v1 þ v2 þ v3 " vs ¼ 0

where, for example, v1 is the voltage across the resistor R1. Using Ohm’s law for each resistor,

R1i1 þ R2i2 þ R2i3 " vs ¼ 0 ) R1i1 þ R2i1 þ R2i1 ¼ vs

Solving for i1, we have
i1 ¼

vs

R1 þ R2 þ R3

R2

R1

R3

+–

a b

d c

vs

v1

v2

i1

is

i3

i2+ −

v3 +−

+

−

FIGURE 3.3-1

Single-loop circuit with a

voltage source vs.
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Thus, the voltage across the nth resistor Rn is vn and can be obtained as

vn ¼ i1Rn ¼
vsRn

R1 þ R2 þ R3

For example, the voltage across resistor R2 is

v2 ¼
R2

R1 þ R2 þ R3

vs

Thus, the voltage across the series combination of resistors is divided up between the individual

resistors in a predictable way. This circuit demonstrates the principle of voltage division, and the circuit

is called a voltage divider.

In general, we may represent the voltage divider principle by the equation

vn ¼
Rn

R1 þ R2 þ ) ) ) þ RN

vs

where vn is the voltage across the nth resistor of N resistors connected in series.

We can replace series resistors by an equivalent resistor. This is illustrated in Figure 3.3-2.

The series resistors R1, R2, and R3 in Figure 3.3-2a are replaced by a single, equivalent resistor

Rs in Figure 3.3-2b. Rs is said to be equivalent to the series resistors R1, R2, and R3 when replacing R1,

R2, and R3 by Rs does not change the current or voltage of any other element of the circuit. In this case,

there is only one other element in the circuit, the voltage source. We must choose the value of the

resistance Rs so that replacing R1, R2, and R3 by Rs will not change the current of the voltage source.

In Figure 3.3-2a, we have

is ¼
vs

R1 þ R2 þ R3

In Figure 3.3-2b, we have

is ¼
vs

Rs

Because the voltage source current must be the same in both circuits, we require that

Rs ¼ R1 þ R2 þ R3

In general, the series connection of N resistors having resistances R1, R2 . . . RN is equivalent to the

single resistor having resistance

Rs ¼ R1 þ R2 þ ) ) ) þ RN

Replacing series resistors by an equivalent resistor does not change the current or voltage of any other

element of the circuit.

+
–

+
–

+ –

+

+

–

–

+

–

R1

(a) (b)

R2

R3

Rs

i2i1

is is

is

i3
vs

v1

v2
vs vs

v3

FIGURE 3.3-2
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Next, let’s calculate the power absorbed by the series resistors in Figure 3.3-2a:

p ¼ is
2R1 þ is

2R2 þ is
2R3

Doing a little algebra gives

p ¼ is
2(R1 þ R2 þ R3) ¼ is

2Rs

which is equal to the power absorbed by the equivalent resistor in Figure 3.3-2b. We conclude that

the power absorbed by series resistors is equal to the power absorbed by the equivalent resistor.

E X A M P L E 3 . 3 - 1 Voltage Division

Consider the two similar voltage divider circuits shown in Figure 3.3-3. Use voltage division to determine the

values of the voltage v2 in Figure 3.3-3a and the voltage vb in Figure 3.3-3b.

+– v2

+

–
400 Ω

300 Ω

100 Ω

12 V
i

+– vb
+

–
400 Ω

300 Ω

100 Ω

12 V
i

(a) (b) FIGURE 3.3-3 Two similar voltage divider circuits.

Solution
First, consider the circuit shown in Figure 3.3-3a. This circuit is an example of a single loop circuit like the circuit

shown in Figure 3.3-1. The 100, 400, and 300-V resistors are connected in series. The current in the loop is

given by

i ¼
12

100þ 400þ 300
¼ 0:015 A ¼ 15 mA

We can calculate the value of v2 using voltage division:

v 2 ¼
400

100þ 400þ 300
12ð Þ ¼ 6 V

As a check, notice that 6 ¼ v 2 ¼ 400 ið Þ ¼ 400 0:015ð Þ

Next, consider the circuit shown in Figure 3.3-3b. This circuit is also an example of a single loop circuit.

Again, the current in the loop is given by

i ¼
12

100þ 400þ 300
¼ 0:015 A ¼ 15 mA

Notice that the voltage vb in Figure 3.3-3b is the same voltage as the voltage v2 in Figure 3.3-3a, except for

polarity. Consequently

v 2 ¼ "v b

Therefore v b ¼
400

100þ 400þ 300
12ð Þ ¼ "6 V

Try it 

yourself 

in WileyPLUS
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(Notice that the voltage v2 in Figure 3.3-3a has the same polarity as the voltage v2 in Figure 3.3-2a, but the voltage

vb in Figure 3.3-3b has the opposite polarity from the voltage v2 in Figure 3.3-2a)

As a check, noticing that the current i and voltage vb in Figure 3.3-3b do not adhere to the passive convention,

we write

"6 ¼ v b ¼ "400 ið Þ ¼ "400 0:015ð Þ

Clearly, we will need to pay attention to voltage polarities when we use voltage division.

E X A M P L E 3 . 3 - 2 Series Resistors

For the circuit of Figure 3.3-4a, find the current measured by the ammeter. Then show that the power absorbed by

the two resistors is equal to that supplied by the source.

15 V

+ – + –

15 V

Ammeter

5 Ω

10 Ω

5 Ω

10 Ω

im

(a) (b)
FIGURE 3.3-4 (a) A circuit containing series resistors. (b) The circuit after the ideal ammeter has been replaced by the equivalent

short circuit, and a label has been added to indicate the current measured by the ammeter im.

Solution
Figure 3.3-4b shows the circuit after the ideal ammeter has been replaced by the equivalent short circuit and a label

has been added to indicate the current measured by the ammeter im. Applying KVL gives

15þ 5im þ 10im ¼ 0

The current measured by the ammeter is

im ¼ "
15

5þ 10
¼ "1 A

(Why is im negative? Why can’t we just divide the source voltage by the equivalent resistance? Recall that when we

use Ohm’s law, the voltage and current must adhere to the passive convention. In this case, the current calculated by

dividing the source voltage by the equivalent resistance does not have the same reference direction as im, so we

need a minus sign.)

The total power absorbed by the two resistors is

pR ¼ 5im
2 þ 10im

2 ¼ 15 12
# $

¼ 15W

The power supplied by the source is

ps ¼ "vs im ¼ "15 "1ð Þ ¼ 15W

Thus, the power supplied by the source is equal to that absorbed by the series connection of resistors.

Try it 

yourself 

in WileyPLUS
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EXERCISE 3.3-1 Determine the voltage measured by the voltmeter in the circuit shown in

Figure E 3.3-1a.

Hint: Figure E 3.3-1b shows the circuit after the ideal voltmeter has been replaced by the equivalent

open circuit and a label has been added to indicate the voltage measured by the voltmeter vm.

Answer: vm¼ 2 V

E X A M P L E 3 . 3 - 3 Voltage Divider Design

The input to the voltage divider in Figure 3.3-5 is the voltage vs of the voltage source. The output is the voltage vo

measured by the voltmeter. Design the voltage divider; that is, specify values of the resistances R1 and R2 to satisfy

both of these specifications.

Specification 1: The input and output voltages are related by vo¼ 0.8 vs.

Specification 2: The voltage source is required to supply no more than 1 mW of power when the input to the

voltage divider is vs¼ 20 V.

Solution
We’ll examine each specification to see what it tells us about the resistor values.

Specification 1: The input and output voltages of the voltage divider are related by

vo ¼
R2

R1 þ R2

vs

So specification 1 requires R2

R1 þ R2

¼ 0:8 ) R2 ¼ 4R1

Specification 2: The power supplied by the voltage source is given by

ps ¼ isvs ¼
vs

R1 þ R2

! "

vs ¼
vs

2

R1 þ R2

So specification 2 requires

0:001 *
202

R1 þ R2

) R1 þ R2 * 400+ 103 ¼ 400 kV

Combining these results gives
5R1 * 400 kV

The solution is not unique. One solution is

R1 ¼ 100 kV and R2 ¼ 400 kV

R1

R2

is

v0

Voltmeter

Voltage Divider

vs
+
–

+

–

FIGURE 3.3-5 A voltage divider.

Try it 

yourself 

in WileyPLUS

Try it 

yourself 

in WileyPLUS
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EXERCISE 3.3-2 Determine the voltage measured by the voltmeter in the circuit shown in

Figure E 3.3-2a.

vm+
–

(b)(a)

8 V

75 Ω

25 Ω+
–

8 V

75 Ω

25 Ω

Voltmeter
+

–

FIGURE E 3.3-2 (a) A voltage divider. (b) The voltage divider after the ideal voltmeter has been replaced by the

equivalent open circuit and a label has been added to indicate the voltage measured by the voltmeter vm.

Hint: Figure E 3.3-2b shows the circuit after the ideal voltmeter has been replaced by the equivalent

open circuit and a label has been added to indicate the voltage measured by the voltmeter vm.

Answer: vm¼"2 V

3.4 P a r a l l e l R e s i s t o r s a n d C u r r e n t D i v i s i o n

Circuit elements, such as resistors, are connected in parallel when the voltage across each element is

identical. The resistors in Figure 3.4-1 are connected in parallel. Notice, for example, that resistors R1

and R2 are each connected to both node a and node b. Consequently, v1¼ v2, so both resistors have the

same voltage. A similar argument shows that resistors R2 and R3 are also connected in parallel. Noticing

that R2 is connected in parallel with both R1 and R3, we say that all three resistors are connected in

parallel. The order of parallel resistors is not important. For example, the voltages and currents of the

three resistors in Figure 3.4-1 will not change if we interchange the positions R2 and R3.

The defining characteristic of parallel elements is that they have the same voltage. To identify a

pair of parallel elements, we look for two elements connected between the same pair of nodes.

Consider the circuit with two resistors and a current source shown in Figure 3.4-2. Note that

both resistors are connected to terminals a and b and that the voltage v appears across each parallel

vm8 V
+
–

+
–

75 Ω

25 Ω

(a) (b)

8 V

75 Ω

25 Ω

Voltmeter
+

–

FIGURE E 3.3-1 (a) A voltage divider. (b) The voltage divider after the ideal voltmeter has been replaced by the

equivalent open circuit and a label has been added to indicate the voltage measured by the voltmeter vm.

R1
vs R2

b

a

+

–

+
–

–

+ +

–

v1 R3
v2 v3

FIGURE 3.4-1 A circuit with parallel resistors.

R1 R2

i2i1
is v

b

a

+

–

FIGURE 3.4-2 Parallel circuit with a current source.
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element. In anticipation of using Ohm’s law, the passive convention is used to assign reference

directions to the resistor voltages and currents. We may write KCL at node a (or at node b) to obtain
is " i1 " i2 ¼ 0

or is ¼ i1 þ i2

Next, from Ohm’s law

i1 ¼
v

R1

and i2 ¼
v

R2

Then

is ¼
v

R1

þ
v

R2

(3.4-1)

Recall that we defined conductance G as the inverse of resistance R. We may therefore rewrite

Eq. 3.4-1 as

is ¼ G1v þ G2v ¼ G1 þ G2ð Þv (3.4-2)

Thus, the equivalent circuit for this parallel circuit is a conductance Gp, as shown in

Figure 3.4-3, where
Gp ¼ G1 þ G2

The equivalent resistance for the two-resistor circuit is found from

Gp ¼
1

R1

þ
1

R2

Because Gp¼ 1=Rp, we have
1

Rp

¼
1

R1

þ
1

R2

or Rp ¼
R1R2

R1 þ R2

(3.4-3)

Note that the total conductance, Gp, increases as additional parallel elements are added and that the total

resistance, Rp, declines as each resistor is added.

The circuit shown in Figure 3.4-2 is called a current divider circuit because it divides the source

current. Note that
i1 ¼ G1v (3.4-4)

Also, because is¼ (G1 þ G2)v, we solve for v, obtaining

v ¼
is

G1 þ G2

(3.4-5)

Substituting v from Eq. 3.4-5 into Eq. 3.4-4, we obtain

i1 ¼
G1is

G1 þ G2

(3.4-6)

Similarly; i2 ¼
G2is

G1 þ G2

Note that we may use G2¼ 1=R2 and G1¼ 1=R1 to obtain the current i2 in terms of two resistances as

follows:

i2 ¼
R1is

R1 þ R2

is
+

–

v Gp

FIGURE 3.4-3

Equivalent circuit for a

parallel circuit.
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The current of the source divides between conductances G1 and G2 in proportion to their conductance

values.

Let us consider the more general case of current division with a set of N parallel conductors as

shown in Figure 3.4-4. The KCL gives

is ¼ i1 þ i2 þ i3 þ ) ) ) þ iN (3.4-7)

for which
in ¼ Gnv (3.4-8)

for n¼ 1, . . . , N. We may write Eq. 3.4-7 as

is ¼ (G1 þ G2 þ G3 þ ) ) ) þ GN)v (3.4-9)

Therefore,

is ¼ v
X

N

n¼1

Gn (3.4-10)

Because in¼Gnv, we may obtain v from Eq. 3.4-10 and substitute it in Eq. 3.4-8, obtaining

in ¼
Gnis

P

N

n¼1

Gn

(3.4-11)

Recall that the equivalent circuit, Figure 3.4-3, has an equivalent conductance Gp such that

Gp ¼
X

N

n¼1

Gn (3.4-12)

Therefore,

in ¼
Gnis

Gp

(3.4-13)

which is the basic equation for the current divider with N conductances. Of course, Eq. 3.4-12 can be

rewritten as

1

Rp

¼
X

N

n¼1

1

Rn

(3.4-14)

is

i1

i2

i3

iN
+ –

GN

G3

G2

G1

v

FIGURE 3.4-4

Set of N parallel

conductances

with a current

source is.

E X A M P L E 3 . 4 - 1 Parallel Resistors

For the circuit in Figure 3.4-5, find (a) the current in each

branch, (b) the equivalent circuit, and (c) the voltage v. The

resistors are

R1 ¼
1

2
V; R2 ¼

1

4
V; R3 ¼

1

8
V

Solution
The current divider follows the equation

in ¼
Gnis

Gp

so it is wise to find the equivalent circuit, as shown in Figure

3.4-6, with its equivalent conductance Gp. We have

Gp ¼
X

N

n¼1

Gn ¼ G1 þ G2 þ G3 ¼ 2þ 4þ 8 ¼ 14 S

Try it 

yourself 

in WileyPLUS

28 A Gp

+

–

v

FIGURE 3.4-6 Equivalent circuit for the parallel

circuit of Figure 3.4-5.

i1 i2
28 A

i3
R1 R2 R3

v

+

–

FIGURE 3.4-5 Parallel circuit for Example 3.3-2.
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Recall that the units for conductance are siemens (S). Then

i1 ¼
G1is

Gp

¼
2

14
(28) ¼ 4 A

Similarly, i2 ¼
G2is

Gp

¼
4(28)

14
¼ 8 A

and i3 ¼
G3is

Gp

¼ 16 A

Because in¼Gnv, we have

v ¼
i1

G1

¼
4

2
¼ 2 V

E X A M P L E 3 . 4 - 2 Parallel Resistors INTERACT IVE EXAMPLE

For the circuit of Figure 3.4-7a, find the voltage measured by the voltmeter. Then show that the power absorbed by

the two resistors is equal to that supplied by the source.

250 mA

250 mA

Voltmeter

(a)

( b) (c)

40 �

40 �

8 �

10 �

10 � 250 mAvm

+

–

vm

+

–

FIGURE 3.4-7 (a) A circuit containing parallel resistors.

(b) The circuit after the ideal voltmeter has been replaced

by the equivalent open circuit and a label has been added

to indicate the voltage measured by the voltmeter vm.

(c) The circuit after the parallel resistors have been

replaced by an equivalent resistance.

Solution
Figure 3.4-7b shows the circuit after the ideal voltmeter has been replaced by the equivalent open circuit, and a

label has been added to indicate the voltage measured by the voltmeter vm. The two resistors are connected in

parallel and can be replaced with a single equivalent resistor. The resistance of this equivalent resistor is

calculated as

40 ) 10

40þ 10
¼ 8 V

Figure 3.4-7c shows the circuit after the parallel resistors have been replaced by the equivalent resistor. The

current in the equivalent resistor is 250 mA, directed upward. This current and the voltage vm do not adhere to the

passive convention. The current in the equivalent resistance can also be expressed as "250 mA, directed

downward. This current and the voltage vm do adhere to the passive convention. Ohm’s law gives

vm ¼ 8 "0:25ð Þ ¼ "2 V

Try it 

yourself 

in WileyPLUS
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The voltage vm in Figure 3.4-7b is equal to the voltage vm in Figure 3.4-7c. This is a consequence of

the equivalence of the 8-V resistor to the parallel combination of the 40-V and 10-V resistors. Looking at

Figure 3.4-7b, we see that the power absorbed by the resistors is

pR ¼
vm

2

40
þ

vm
2

10
¼

22

40
þ

22

10
¼ 0:1þ 0:4 ¼ 0:5W

The voltage vm and the current of the current source adhere to the passive convention, so

ps ¼ vm(0:25) ¼ "2ð Þ 0:25ð Þ ¼ "0:5W

is the power received by the current source. The current source supplies 0.5 W.

Thus, the power absorbed by the two resistors is equal to that supplied by the source.

E X A M P L E 3 . 4 - 3 Current Divider Design

The input to the current divider in Figure 3.4-8 is the current is of the current source. The output is the current, io,

measured by the ammeter. Specify values of the resistances R1 and R2 to satisfy both of these specifications:

R1

R2
is

io
Ammeter

Current Divider

vs

+

–

FIGURE 3.4-8 A current divider circuit.

Specification 1: The input and output currents are related by io¼ 0.8 is.

Specification 2: The current source is required to supply no more than 10 mW of power when the input to the

current divider is is¼ 2 mA.

Solution
We’ll examine each specification to see what it tells us about the resistor values.

Specification 1: The input and output currents of the current divider are related by

io ¼
R2

R1 þ R2

is

So specification 1 requires

R2

R1 þ R2

¼ 0:8 ) R2 ¼ 4R1

Specification 2: The power supplied by the current source is given by

ps ¼ isvs ¼ is is
R1R2

R1 þ R2

! "! "

¼ is
2 R1R2

R1 þ R2

! "

So specification 2 requires

0:01 * 0:002ð Þ2
R1R2

R1 þ R2

! "

)
R1R2

R1 þ R2

, 2500

Try it 

yourself 

in WileyPLUS
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EXERCISE 3.4-1 A resistor network consisting of parallel resistors is shown in a package used

for printed circuit board electronics in Figure E 3.4-1a. This package is only 2 cm + 0.7 cm, and each

resistor is 1 kV. The circuit is connected to use four resistors as shown in Figure E 3.4-1b. Find the

equivalent circuit for this network. Determine the current in each resistor when is ¼ 1 mA.

is R R R R

( b)(a)

FIGURE E 3.4-1

(a) A parallel

resistor network.

(b) The connected

circuit uses

four resistors where

R¼ 1 kV.

Answer: Rp¼ 250 V

EXERCISE 3.4-2 Determine the current measured by the ammeter in the circuit shown in

Figure E 3.4-2a.

5 A

5 A

Ammeter

10 �

10 �

40 �

40 �

im

(a)

( b)

FIGURE E 3.4-2 (a) A current divider. (b) The

current divider after the ideal ammeter has been

replaced by the equivalent short circuit and a label

has been added to indicate the current measured by

the ammeter im.

Hint: Figure E 3.4-2b shows the circuit after the ideal ammeter has been replaced by the equivalent

short circuit, and a label has been added to indicate the current measured by the ammeter im.

Answer: im¼"1 A

Combining these results gives

R1 4R2ð Þ

R1 þ 4R2

, 2500 )
4

5
R1 , 2500 ) R1 , 3125V

The solution is not unique. One solution is

R1 ¼ 3 kV and R2 ¼ 12 kV

Courtesy of Vishay Intertechnology, Inc.
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3.5 S e r i e s V o l t a g e S o u r c e s a n d P a r a l l e l C u r r e n t
S o u r c e s

Voltage sources connected in series are equivalent to a single voltage source. The voltage of the equivalent

voltage source is equal to the algebraic sum of voltages of the series voltage sources.

Consider the circuit shown in Figure 3.5-1a. Notice that the currents of both voltage sources are

equal. Accordingly, define the current is to be

is ¼ ia ¼ ib (3.5-1)

Next, define the voltage vs to be

vs ¼ va þ vb (3.5-2)

Using KCL, KVL, and Ohm’s law, we can represent the circuit in Figure 3.5-1a by the equations

ic ¼
v1

R1

þ is (3.5-3)

is ¼
v2

R2

þ i3 (3.5-4)

vc ¼ v1 (3.5-5)

v1 ¼ vs þ v2 (3.5-6)

v2 ¼ i3R3 (3.5-7)

where is¼ ia¼ ib and vs¼ va þ vb. These same equations result from applying KCL, KVL,

and Ohm’s law to the circuit in Figure 3.5-1b. If is¼ ia¼ ib and vs¼ va þ vb, then the circuits

shown in Figures 3.5-1a and 3.5-1b are equivalent because they are both represented by the same

equations.

For example, suppose that ic¼ 4 A, R1¼ 2 V, R2¼ 6 V, R3¼ 3 V, va¼ 1 V, and vb¼ 3 V.

The equations describing the circuit in Figure 3.5-1a become

vc v1 v2 v3

vs

i1
ic

i2 i3
R1

( b)

(a)

R2 R3

vc v1 v2 v3

i1 i2 i3
R1

+

–

+

–

R2 R3

is

va

ia

vb

ibic
+

–

+

–

+

–

+

–

+

–

+

–

+ – + –

+ –

FIGURE 3.5-1 (a) A circuit containing

voltage sources connected in series and

(b) an equivalent circuit.
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4 ¼
v1

2
þ is (3.5-8)

is ¼
v2

6
þ i3 (3.5-9)

vc ¼ v1 (3.5-10)

v1 ¼ 4þ v2 (3.5-11)

v2 ¼ 3i3 (3.5-12)

The solution to this set of equations is v1¼ 6 V, is ¼ 1 A, i3¼ 0.66 A, v2¼ 2 V, and vc¼ 6 V.

Eqs. 3.5-8 to 3.5-12 also describe the circuit in Figure 3.5-1b. Thus, v1¼ 6 V, is¼ 1 A,

i3¼ 0.66 A, v2¼ 2 V, and vc¼ 6 V in both circuits. Replacing series voltage sources by a

single, equivalent voltage source does not change the voltage or current of other elements of the

circuit.

Figure 3.5-2a shows a circuit containing parallel current sources. The circuit in Figure

3.5-2b is obtained by replacing these parallel current sources by a single, equivalent current

source. The current of the equivalent current source is equal to the algebraic sum of the currents of

the parallel current sources.

We are not allowed to connect independent current sources in series. Series elements have

the same current. This restriction prevents series current sources from being independent.

Similarly, we are not allowed to connect independent voltage sources in parallel.

Table 3.5-1 summarizes the parallel and series connections of current and voltage sources.

Table 3.5-1 Parallel and Series Voltage and Current Sources

CIRCUIT EQUIVALENT CIRCUIT CIRCUIT EQUIVALENT CIRCUIT

ia

+ – + –

+ – +–

ib

va vb

va vb va + vb

va – vb

+ –

+ –

Not allowed

va vb
+
–

+
–

ia ib

ia ib

Not allowed

ia – ib

ia + ib

vc

vc

ia

ib
R2

R2

R3

R3

R1

(a)

( b)

R1

ia + ib

+
–

+
–

FIGURE 3.5-2

(a) A circuit

containing parallel

current sources and (b)

an equivalent circuit.
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E X A M P L E 3 . 5 - 1 Series and Parallel Sources

Figures 3.5-3a and c show two similar circuits. Both contain series voltage sources and parallel current sources. In

each circuit, replace the series voltage sources with an equivalent voltage source and the parallel current sources

with an equivalent current source.

v2

+

–
40 �

20 �i1

2 A 3.5 A

+ –

+– 32 V

14 V 20 �i1

5.5 A+– 18 V

20 �i1

2 A 3.5 A

+–

+– 32 V

14 V 20 �i1

1.5 A+– 46 V

v2

+

–
40 �

v2

+

–
40 �v2

+

–
40 �

(a) (b)

(c) (d) FIGURE 3.5-3 The circuits

considered in Example 3.5-1.

Solution
Consider first the circuit in Figure 3.5-3a. Apply KVL to the left mesh to get

14þ v 2 " 32 ¼ 0 ) v 2 " 18 ¼ 0

Next apply KCL at the right node of the 20V to get

i 1 ¼ 2þ 3:5 ) i 1 ¼ 5:5

These equations suggest that we replace the series voltage sources by a single 18-V source and replace the parallel

current sources by a single 5.5-A source. Figure 3.5-3b shows the result.

Notice that v2 " 18 ¼ 0

is the KVL equation corresponding to the left mesh of the circuit in Figure 3.5-3b and

i 1 ¼ 5:5

is the KCL equation corresponding to the right node of the 20V to Figure 3.5-3b.

Next, consider first the circuit in Figure 3.5-3c. Apply KVL to the left mesh to get

"14þ v 2 " 32 ¼ 0 ) v 2 " 46 ¼ 0

Next apply KCL at the right node of the 20V to get

i 1 þ 2 ¼ 3:5 ) i 1 ¼ 1:5

Try it 

yourself 

in WileyPLUS
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3.6 C i r c u i t A n a l y s i s

In this section, we consider the analysis of a circuit by replacing a set of resistors with an equivalent

resistance, thus reducing the network to a form easily analyzed.

Consider the circuit shown in Figure 3.6-1. Note that it includes a set of resistors that is connected

in series and another set of resistors that is connected in parallel. It is desired to find the output voltage

vo, so we wish to reduce the circuit to the equivalent circuit shown in Figure 3.6-2.

We note that the equivalent series resistance is

Rs ¼ R1 þ R2 þ R3

and the equivalent parallel resistance is Rp ¼
1

Gp

where Gp ¼ G4 þ G5 þ G6

Then, using the voltage divider principle, with Figure 3.6-2, we have

vo ¼
Rp

Rs þ Rp

vs

Replacing the series resistors by the equivalent resistor Rs did not change the current or voltage of

any other circuit element. In particular, the voltage vo did not change. Also, the voltage vo across the

equivalent resistor Rp is equal to the voltage across each of the parallel resistors. Consequently, the

voltage vo in Figure 3.6-2 is equal to the voltage vo in Figure 3.6-1. We can analyze the simple circuit

in Figure 3.6-2 to find the value of the voltage vo and know that the voltage vo in the more

complicated circuit shown in Figure 3.6-1 has the same value.

In general, we may find the equivalent resistance for a portion of a circuit consisting only of

resistors and then replace that portion of the circuit with the equivalent resistance. For example,

consider the circuit shown in Figure 3.6-3. The resistive circuit in (a) is equivalent to the single 56 V

resistor in (b). Let’s denote the equivalent resistance as Req. We say that Req is “the equivalent resistance

seen looking into the circuit of Figure 3.6-3a from terminals a-b.” Figure 3.6-3c shows a notation used

to indicate the equivalent resistance. Equivalent resistance is an important concept that occurs in a

variety of situations and has a variety of names. “Input resistance,” “output resistance,” “Th!evenin

resistance,” and “Norton resistance” are some names used for equivalent resistance.

These equations suggest that we replace the series voltage sources by a single 46-V source and replace the parallel

current sources by a single 1.5-A source. Figure 3.5-3d shows the result.

Notice that v2 " 46 ¼ 0

is the KVL equation corresponding to the left mesh of the circuit in Figure 3.5-3d and

i1 ¼ 1:5

is the KCL equation corresponding to the right node of the 20 V to Figure 3.5-3d.

vs vo

R1 R2 R3

R4 R5 R6
+
–

+

–

FIGURE 3.6-1 Circuit with a set of series resistors and

a set of parallel resistors.

vovs

Rs

RP

+

–

+
–

FIGURE 3.6-2 Equivalent circuit for the circuit of

Figure 3.6-2.
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25 Ω

28 Ω 56 Ω20 Ω

52 Ω15 Ω

25 Ω

28 Ω20 Ω

52 Ω15 Ωa

b

a

b

a

b

(a) (b)

b

Req (c)
FIGURE 3.6-3 The resistive circuit in (a) is equivalent to the single resistor in (b). The notation used to indicate the

equivalent resistance is shown in (c).

E X A M P L E 3 . 6 - 1 Series and Parallel Resistors

Determine the value of the current i for the circuit shown in Figure 3.6-4.

Solution
The 150- and 600-V resistors are connected in series. These series resistors are equivalent to a single resistor. The

resistance of the equivalent resistance given by

R s ¼ 150þ 600 ¼ 750 V

Figure 3.6-5a shows the circuit after replacing the series resistors by an equivalent resistor. Notice that the current

in the equivalent resistor has been labeled as i because it is known to be equal to the currents in the individual series

resistors.

The 500- and 750-V resistors in Figure 3.6-5a are connected parallel. These parallel resistors are equivalent

to a single resistor. The resistance of the equivalent resistance given by

R p ¼
500 750ð Þ

500þ 750
¼ 300 V

Figure 3.6-5b shows the circuit after replacing the parallel resistors by an equivalent resistor. Notice that there is no

place in Figure 3.6-5b to label the current i.

The 200- and 300-V resistors in Figure 3.6-5b are connected series. The voltage across the 300-V resistor can

be calculated using voltage division:

v 2 ¼
300

200þ 300
40ð Þ ¼ 24 V

The current in the series 200- and 300-V resistors in Figure 3.6-5b is

i 1 ¼
40

200þ 300
¼ 0:08 A ¼ 80 mA

+– 500 Ω

200 Ω

40 V
i

600 Ω

150 Ω

FIGURE 3.6-4 The circuit considered in Example 3.6-1.

Try it 

yourself 

in WileyPLUS
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Figure 3.6-5c shows the circuit as it was before replacing the parallel 500- and 750-V resistors by an equivalent

resistor. Replacing these parallel resistors by an equivalent resistance did not change the current in the 200-V

resistor so the current in the 200-V in Figure 3.6-5d is labeled as i1. Also, the voltage across the equivalent

300-V resistor is equal to the voltage across the individual 500- and 750-V parallel resistors. Consequently,

the voltage labeled v2 in Figure 3.6-5c is equal to the voltage labeled v2 in Figure 3.6-5b.

The current i in Figure 3.6-5c is related to the current i1 by current division:

i ¼
500

500þ 750
i 1 ¼ 0:4ð Þ 80ð Þ ¼ 32 mA

As a check, we can also calculate the current i using Ohm’s law:

i ¼
v2

750
¼

24

750
¼ 32 mA

(As noted earlier, the current i in Figures 3.6-4a and c have the same value as the current i in Figure 3.6-5.)

v2

+

–
+– 500 Ω

200 Ω

40 V 750 Ω +– 300 Ω

200 Ω

40 V

i1

+– 500 Ω

200 Ω

40 V 750 Ωv2

+

–

i1

i

i

(a) (b)

(c)
FIGURE 3.6-5 Analyzing the circuit

in Figure 3.6-4 using equivalent

resistances.

E X A M P L E 3 . 6 - 2 Equivalent Resistance

The circuit in Figure 3.6-6a contains an ohmmeter. An ohmmeter is an instrument that measures resistance in ohms.

The ohmmeter will measure the equivalent resistance of the resistor circuit connected to its terminals. Determine

the resistance measured by the ohmmeter in Figure 3.6-6a.

Solution
Working from left to right, the 30-V resistor is parallel to the 60-V resistor. The equivalent resistance is

60 ) 30

60þ 30
¼ 20V

In Figure 3.6-6b, the parallel combination of the 30-V and 60-V resistors has been replaced with the equivalent

20-V resistor. Now the two 20-V resistors are in series.

Try it 

yourself 

in WileyPLUS
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E X A M P L E 3 . 6 - 3 Circuit Analysis Using Equivalent Resistances

Determine the values of i3, v4, i5, and v6 in circuit shown in Figure 3.6-7.

Solution
The circuit shown in Figure 3.6-8 has been obtained from the circuit shown in Figure 3.6-7 by replacing series and

parallel combinations of resistances by equivalent resistances. We can use this equivalent circuit to solve this

problem in three steps:

1. Determine the values of the resistances R1, R2, and R3 in Figure 3.6-8 that make the circuit in Figure 3.6-8

equivalent to the circuit in Figure 3.6-7.

.

The equivalent resistance is

20þ 20 ¼ 40V

In Figure 3.6-6c, the series combination of the two 20-V resistors has been replaced with the equivalent 40-V

resistor. Now the 40-V resistor is parallel to the 10-V resistor. The equivalent resistance is

40 ) 10

40þ 10
¼ 8V

In Figure 3.6-6d the parallel combination of the 40-V and 10-V resistors has been replaced with the equivalent

8-V resistor. Thus, the ohmmeter measures a resistance equal to 8 V.

(a) ( b)

(d)(c)

60 � 30 � 10 � 10 �

8 �10 �40 �

20 �

20 �

20 �
Ohmmeter Ohmmeter

OhmmeterOhmmeter

FIGURE 3.6-6
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12 Ω

18 Ω6 Ω

8 Ω

12 Ω

8 Ω

d

ba

c

2 Ω 6 Ω

20 Ω 5 Ω

18 V

i5

i3

i
v2

v6

+

+

–

v4 +–

v1+ –

–

+
–

FIGURE 3.6-7 The circuit considered in Example 3.6-3.

2. Determine the values of v1, v2, and i in Figure 3.6-8.

3. Because the circuits are equivalent, the values of v1, v2, and i in Figure 3.6-7 are equal to the values of v1,

v2, and i in Figure 3.6-8. Use voltage and current division to determine the values of i3, v4, i5, and v6 in

Figure 3.6-7.

Step 1: Figure 3.6-9a shows the three resistors at the top of the circuit in Figure 3.6-7. We see that the 6-V

resistor is connected in series with the 18-V resistor. In Figure 3.6-9b, these series resistors have been replaced by

the equivalent 24-V resistor. Now the 24-V resistor is connected in parallel with the 12-V resistor. Replacing series

resistors by an equivalent resistance does not change the voltage or current in any other element of the circuit. In

particular, v1, the voltage across the 12-V resistor, does not change when the series resistors are replaced by the

equivalent resistor. In contrast, v4 is not an element voltage of the circuit shown in Figure 3.6-9b.

In Figure 3.6-9c, the parallel resistors have been replaced by the equivalent 8-V resistor. The voltage across

the equivalent resistor is equal to the voltage across each of the parallel resistors, v1 in this case. In summary, the

resistance R1 in Figure 3.6-8 is given by

R1 ¼ 12 k 6þ 18ð Þ ¼ 8V

Similarly, the resistances R2 and R3 in Figure 3.6-7 are given by

R2 ¼ 12þ 20 k 5ð Þ ¼ 16V

R3 ¼ 8 k 2þ 6ð Þ ¼ 4V

8 Ω

18 V

a

c d

b

v2

i

+–

v1

R1

R2

R3

+ –

+
–

FIGURE 3.6-8 An equivalent circuit for

the circuit in Figure 3.6-7.

v1+ –

v4 +–

v1+ –

v1+ –

12 Ω 12 Ω

24 Ω

8 Ω

18 Ω6 Ω

a b a b a b

(a) (b) (c)
FIGURE 3.6-9
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EXERCISE 3.6-1 Determine the resistance measured by the ohmmeter in Figure E 3.6-1.

30 Ω 30 Ω
Ohmmeter

30 Ω 30 Ω

FIGURE E 3.6-1

Answer:
(30 þ 30) ) 30

(30 þ 30) þ 30
þ 30 ¼ 50 V

3.7 A n a l y z i n g R e s i s t i v e C i r c u i t s
U s i n g MAT L AB

We can analyze simple circuits by writing and solving a set of equations. We use Kirchhoff’s law and

the element equations, for instance, Ohm’s law, to write these equations. As the following example

illustrates, MATLAB provides a convenient way to solve the equations describing an electric circuit.

E X A M P L E 3 . 7 - 1 MATLAB for Simple Circuits

Determine the values of the resistor voltages and currents for the circuit shown in Figure 3.7-1.

12 V 0.5 A 32 Ω80 Ω

40 Ω 48 Ω

+–

FIGURE 3.7-1 The circuit considered in Example 3.7-1.

Step 2: Apply KVL to the circuit of Figure 3.6-7 to get

R1i þ R2i þ R3i þ 8i " 18 ¼ 0 ) i ¼
18

R1 þ R2 þ R3 þ 8
¼

18

8þ 16þ 4þ 8
¼ 0:5 A

Next, Ohm’s law gives
v1 ¼ R1i ¼ 8 0:5ð Þ ¼ 4 V and v2 ¼ R3i ¼ 4 0:5ð Þ ¼ 2 V

Step 3: The values of v1, v2, and i in Figure 3.6-7 are equal to the values of v1, v2, and i in Figure 3.6-8.

Returning our attention to Figure 3.6-7, and paying attention to reference directions, we can determine the values of

i3, v4, i5, and v6 using voltage division, current division, and Ohm’s law:

i3 ¼
8

8þ 2þ 6ð Þ
i ¼

1

2
0:5ð Þ ¼ 0:25 A

v4 ¼ "
18

6þ 18
v1 ¼ "

3

4
4ð Þ ¼ "3 V

i5 ¼ "
5

20þ 5
i ¼ "

1

5

! "

0:5ð Þ ¼ "0:1 A

v6 ¼ 20 k 5ð Þi ¼ 4 0:5ð Þ ¼ 2 V
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12V

+ + +

+

+

–

–

– –

– 0.5A

40 � 48 �

32 �80 �
v2

v4

i2 i5

v5

i6i4

v6

FIGURE 3.7-2 The circuit from Figure 3.7-1 after labeling the

resistor voltages and currents.

Solution
Let’s label the resistor voltages and currents. In anticipation of using Ohm’s law, we will label the voltage and

current of each resistor to adhere to the passive convention. (Pick one of the variables—the resistor current or the

resistor voltage—and label the reference direction however you like. Label the reference direction of the other

variable to adhere to the passive convention with the first variable.) Figure 3.7-2 shows the labeled circuit.

Next, we will use Kirchhoff’s laws. First, apply KCL to the node at which the current source and the 40-V,

48-V, and 80-V resistors are connected together to write

i2 þ i5 ¼ 0:5þ i4 (3.7-1)

Next, apply KCL to the node at which the 48-V and 32-V resistors are connected together to write

i5 ¼ i6 (3.7-2)

Apply KVL to the loop consisting of the voltage source and the 40-V and 80-V resistors to write

12 ¼ v2 þ v4 (3.7-3)

Apply KVL to the loop consisting of the 48-V, 32-V, and 80-V resistors to write

v4 þ v5 þ v6 ¼ 0 (3.7-4)

Apply Ohm’s law to the resistors.

v2 ¼ 40 i2; v4 ¼ 80 i4; v5 ¼ 48 i5; v6 ¼ 32 i6 (3.7-5)

We can use the Ohm’s law equations to eliminate the variables representing resistor voltages. Doing so enables us

to rewrite Eq. 3.7-3 as:
12 ¼ 40 i2 þ 80 i4 (3.7-6)

Similarly, we can rewrite Eq. 3.7-4 as

80 i4 þ 48 i5 þ 32 i6 ¼ 0 (3.7-7)

Next, use Eq. 3.7-2 to eliminate i6 from Eq. 3.7-6 as follows

80 i4 þ 48 i5 þ 32 i5 ¼ 0 ) 80 i4 þ 80 i5 ¼ 0 ) i4 ¼ "i5 (3.7-8)

Use Eq. 3.7-8 to eliminate i5 from Eq. 3.7-1.

i2 " i4 ¼ 0:5þ i4 ) i2 ¼ 0:5þ 2 i4 (3.7-9)

Use Eq. 3.7-9 to eliminate i4 from Eq. 3.7-6. Solve the resulting equation to determine the value of i2.

12 ¼ 40 i2 þ 80
i2 " 0:5

2

! "

¼ 80 i2 " 20 ) i2 ¼
12þ 20

80
¼ 0:4 A (3.7-10)

Now we are ready to calculate the values of the rest of the resistor voltages and currents as follows:

i4 ¼
i2 " 0:5

2
¼

0:4" 0:5

2
¼ "0:05 A;

i6 ¼ i5 ¼ "i4 ¼ 0:05 A;

v2 ¼ 40 i2 ¼ 40 0:4ð Þ ¼ 16 V;

v4 ¼ 80 i4 ¼ 80 "0:05ð Þ ¼ "4 V;

v5 ¼ 48 i5 ¼ 48 0:05ð Þ ¼ 2:4 V;

and v6 ¼ 32 i6 ¼ 32 0:05ð Þ ¼ 1:6 V:
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MATLAB Solution 1

The preceding algebra shows that this circuit can be represented by these equations:

12 ¼ 80 i2 " 20; i4 ¼
i2 " 0:5

2
; i6 ¼ i5 ¼ "i4; v2 ¼ 40 i2; v4 ¼ 80 i4;

v5 ¼ 48 i5; and v6 ¼ 32 i6

These equations can be solved consecutively, using MATLAB as shown in Figure 3.7-3.

MATLAB Solution 2

We can avoid some algebra if we are willing to solve simultaneous equations.

After applying Kirchhoff’s laws and then using the Ohm’s law equations to eliminate the variables

representing resistor voltages, we have Eqs. 3.7-1, 2, 6, and 7:

i2 þ i5 ¼ 0:5þ i4; i5 ¼ i6; 12 ¼ 40 i2 þ 80 i4;

and 80 i4 þ 48 i5 þ 32 i6 ¼ 0

FIGURE 3.7-3 Consecutive equations. FIGURE 3.7-4 Simultaneous equations.
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A circuit consisting of n elements has n currents and n voltages. A set of equations representing that

circuit could have as many as 2n unknowns. We can reduce the number of unknowns by labeling the

currents and voltages carefully. For example, suppose two of the circuit elements are connected in series.

We can choose the reference directions for the currents in those elements so that they are equal and use one

variable to represent both currents. Table 3.7-1 presents some guidelines that will help us reduce the

number of unknowns in the set of equations describing a given circuit.

This set of four simultaneous equations in i2, i4, i5, and i6 can be written as a single matrix equation.

1 "1 1 0

0 0 1 "1

40 80 0 0

0 80 48 32

2

6

6

4

3

7

7

5

i2
i4
i5
i6

2

6

6

4

3

7

7

5

¼

0:5
0

12

0

2

6

6

4

3

7

7

5

(3.7-11)

We can write this equation as

Ai ¼ B (3.7-12)

where

A ¼

1 "1 1 0

0 0 1 "1

40 80 0 0

0 80 48 32

2

6

6

4

3

7

7

5

; i ¼

i2
i4
i5
i6

2

6

6

4

3

7

7

5

and B ¼

0:5
0

12

0

2

6

6

4

3

7

7

5

This matrix equation can be solved using MATLAB as shown in Figure 3.7-4. After entering matrices A and B, the

statement

i ¼ AnB

tells MATLAB to calculate i by solving Eq. 3.7-12.

Table 3.7-1 Guidelines for Labeling Circuit Variables

CIRCUIT FEATURE GUIDELINE

Resistors Label the voltage and current of each resistor to adhere to the passive convention. Use Ohm’s

law to eliminate either the current or voltage variable.

Series elements Label the reference directions for series elements so that their currents are equal. Use one

variable to represent the currents of series elements.

Parallel elements Label the reference directions for parallel elements so that their voltages are equal. Use one

variable to represent the voltages of parallel elements.

Ideal Voltmeter Replace each (ideal) voltmeter by an open circuit. Label the voltage across the open circuit to

be equal to the voltmeter voltage.

Ideal Ammeter Replace each (ideal) ammeter by a short circuit. Label the current in the short circuit to be

equal to the ammeter current.
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3.8 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct.

For example, proposed solutions to design problems must be checked to confirm that all of the

specifications have been satisfied. In addition, computer output must be reviewed to guard against

data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,

occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify

those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of

problem discussed in this chapter.

E X A M P L E 3 . 8 - 1 How Can We Check Voltage and Current Values?

The circuit shown in Figure 3.8-1a was analyzed by writing and solving a set of simultaneous equations:

12 ¼ v2 þ 4i3; i4 ¼
v2

5
þ i3; v5 ¼ 4i3; and

v5

2
¼ i4 þ 5i4

The computer program Mathcad (Mathcad User’s Guide, 1991) was used to solve the equations as shown in

Figure 3.8-1b. It was determined that

v2 ¼ "60 V; i3 ¼ 18 A; i4 ¼ 6 A; and v5 ¼ 72 V:

How can we check that these currents and voltages are correct?

–

–

–
–

+

+

+

+

c

db

2 Ω

4 Ω

5 Ω

C

A

a

B

v5

v3

v1=12 V

i4

i2

(b)(a)

i3

i6=5i4

v2

FIGURE 3.8-1 (a) An example circuit and (b) computer analysis using Mathcad.
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Solution
The current i2 can be calculated from v2, i3, i4, and v5 in a couple of different ways. First, Ohm’s law gives

i2 ¼
v2

5
¼

"60

5
¼ "12 A

Next, applying KCL at node b gives

i2 ¼ i3 þ i4 ¼ 18þ 6 ¼ 24 A

Clearly, i2 cannot be both "12 and 24 A, so the values calculated for v2, i3, i4, and v5 cannot be correct. Checking

the equations used to calculate v2, i3, i4, and v5, we find a sign error in the KCL equation corresponding to

node b. This equation should be

i4 ¼
v2

5
" i3

After making this correction, v2, i3, i4, and v5 are calculated to be

v2 ¼ 7:5 V; i3 ¼ 1:125 A; i4 ¼ 0:375 A; v5 ¼ 4:5 V

Now i2 ¼
v2

5
¼

7:5

5
¼ 1:5 A

and i2 ¼ i3 þ i4 ¼ 1:125 þ 0:375 ¼ 1:5A

This checks as we expected.

As an additional check, consider v3. First, Ohm’s law gives

v3 ¼ 4i3 ¼ 4(1:125) ¼ 4:5 V

Next, applying KVL to the loop consisting of the voltage source and the 4-V and 5-V resistors gives

v3 ¼ 12" v2 ¼ 12" 7:5 ¼ 4:5 V

Finally, applying KVL to the loop consisting of the 2-V and 4-V resistors gives

v3 ¼ v5 ¼ 4:5 V

The results of these calculations agree with each other, indicating that

v2 ¼ 7:5 V; i3 ¼ 1:125 A; i4 ¼ 0:375 A; v5 ¼ 4:5 V

are the correct values.
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3 . 9 D E S I G N E X A M P L E Adjustable Voltage Source

A circuit is required to provide an adjustable voltage. The specifications for this circuit are that:

1. It should be possible to adjust the voltage to any value between "5 V and þ5 V. It should not be possible

accidentally to obtain a voltage outside this range.

2. The load current will be negligible.

3. The circuit should use as little power as possible.

The available components are:

1. Potentiometers: resistance values of 10 kV, 20 kV, and 50 kV are in stock.

2. A large assortment of standard 2 percent resistors having values between 10 V and 1 MV (see Appendix D).

3. Two power supplies (voltage sources): one 12-V supply and one "12-V supply, both rated at 100 mA

(maximum).

Describe the Situation and the Assumptions
Figure 3.9-1 shows the situation. The voltage v is the adjustable voltage. The circuit that uses the

output of the circuit being designed is frequently called the load. In this case, the load current is negligible,

so i¼ 0.

Load

circuit

Circuit

being

designed

Load current

–

+

v

i = 0

FIGURE 3.9-1 The circuit being

designed provides an adjustable

voltage, v, to the load circuit.

State the Goal
A circuit providing the adjustable voltage

"5V , v , þ5V

must be designed using the available components.

Generate a Plan
Make the following observations.

1. The adjustability of a potentiometer can be used to obtain an adjustable voltage v.

2. Both power supplies must be used so that the adjustable voltage can have both positive and negative

values.

3. The terminals of the potentiometer cannot be connected directly to the power supplies because the voltage v is

not allowed to be as large as 12 V or "12 V.

These observations suggest the circuit shown in Figure 3.9-2a. The circuit in Figure 3.9-2b is obtained by using the

simplest model for each component in Figure 3.9-2a.
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Rp

a Rp (1 – a)Rp

R1 R1R2 R2

12 V –12 V 12 V –12 V

Load

circuit

0 < a < 1

–

+

v

(a) (b)

i =0 i =0

–

+

–
+

–
+

v

–
+

–
+

FIGURE 3.9-2 (a) A proposed circuit for producing the variable voltage, v, and (b) the equivalent circuit after the potentiometer

is modeled.

To complete the design, values need to be specified for R1, R2, and Rp. Then several results need to be checked

and adjustments made, if necessary.

1. Can the voltage v be adjusted to any value in the range "5 V to þ5V?

2. Are the voltage source currents less than 100 mA? This condition must be satisfied if the power supplies are to

be modeled as ideal voltage sources.

3. Is it possible to reduce the power absorbed by R1, R2, and Rp?

Act on the Plan
It seems likely that R1 and R2 will have the same value, so let R1¼R2¼R. Then it is convenient to redraw Figure

3.9-2b as shown in Figure 3.9-3.

a Rp (1 – a)Rp

RR

12 V –12 V–
+

–
+

iav

+

–

FIGURE 3.9-3 The circuit after setting R1¼R2¼R.

Applying KVL to the outside loop yields

"12þ Ria þ aRp ia þ (1" a)Rp ia þ Ria " 12 ¼ 0

so ia ¼
24

2R þ Rp

Next, applying KVL to the left loop gives

v ¼ 12" (R þ aRp)ia

Substituting for ia gives

v ¼ 12"
24 R þ aRp

# $

2R þ Rp

When a¼ 0, v must be 5 V, so

5 ¼ 12"
24R

2R þ Rp
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Solving for R gives

R ¼ 0:7Rp

Suppose the potentiometer resistance is selected to be Rp¼ 20 kV, the middle of the three available values.

Then,

R ¼ 14 kV

Verify the Proposed Solution
As a check, notice that when a¼ 1,

v ¼ 12"
14,000þ 20,000

28,000 þ 20,000

! "

24 ¼ "5

as required. The specification that

"5 V , v , 5 V

has been satisfied. The power absorbed by the three resistances is

p ¼ ia
2(2R þ Rp) ¼

242

2R þ Rp

so p ¼ 12 mW

Notice that this power can be reduced by choosing Rp to be as large as possible, 50 kV in this case. Changing

Rp to 50 kV requires a new value of R:

R ¼ 0:7+ Rp ¼ 35 kV

Because

"5 V ¼ 12"
35,000þ 50,000

70,000þ 50,000

! "

24 , v , 12"
35,000

70,000þ 50,000

! "

24 ¼ 5 V

the specification that

"5 V , v , 5 V

has been satisfied. The power absorbed by the three resistances is now

p ¼
242

50,000þ 70,000
¼ 5 mW

Finally, the power supply current is

ia ¼
24

50,000þ 70,000
¼ 0:2 mA

which is well below the 100 mA that the voltage sources are able to supply. The design is complete.
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3.10 SUMMARY

Kirchhoff’s current law (KCL) states that the algebraic sum

of the currents entering a node is zero. Kirchhoff’s voltage

law (KVL) states that the algebraic sum of the voltages

around a closed path (loop) is zero.

Simple electric circuits can be analyzed using only Kirchhoff’s

laws and the constitutive equations of the circuit elements.

Series resistors act like a “voltage divider,” and parallel

resistors act like a “current divider.” The first two rows of

Table 3.10-1 summarize the relevant equations.

Series resistors are equivalent to a single “equivalent resis-

tor.” Similarly, parallel resistors are equivalent to a single

“equivalent resistor.” The first two rows of Table 3.10-1

summarize the relevant equations.

Series voltage sources are equivalent to a single

“equivalent voltage source.” Similarly, parallel current

sources are equivalent to a single “equivalent current.”

The last two rows of Table 3.10-1 summarize the relevant

equations.

Often circuits consisting entirely of resistors can be

reduced to a single equivalent resistor by repeatedly

replacing series and/or parallel resistors by equivalent

resistors.

Table 3.10-1 Equivalent Circuits for Series and Parallel Elements

Circuit

Parallel resistors

Series voltage

sources

Parallel current

sources

Series resistors Circuit

–

+

v

–

+

v

v, v

–

– ++

v2

v2

v2

v1

v1

v1

R2

R1

R1 R2

R1 + R2

R2 R1

R1 + R2 R1 + R2

R1

R1 + R2

R1 + R2

R1R2

and

andand

and

and

Rs= R1 + R2

vs= v1+ v2

ip= i1+ i2

Rp=

v = Rsi

v = Rpi

Rs

i1 i

Circuit

–

+

–
+

v Rp

i

Circuit

–

+

v vs

i

i

Circuit

–

+

v ip

i

i2

R2

i2

i2

i1i

i1

i

i

i = i 1= i 2 ,v 1=

v = v1= v2, i1  =

i = i1= i2

i

i = i1+ i2

v = v1+ v2

v1 i1 v2 i2

v = v1= v2

i2=i, i

Circuit

Circuit

Circuit

– – –

+

–

–

+

+

+ +

v

–

+

v

– – –

+ + +

v

 and v2=
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PROBLEMS

Section 3.2 Kirchhoff’s Laws

P 3.2-1 Consider the circuit shown in Figure P 3.2-1.

Determine the values of the power supplied by branch B and the

power supplied by branch F.

+

–

+

–

+

+

+

–

–

–

+

–

–12 V 12 V 12 V 4 A

4 V

1 A

–1 A

1 A

–5 V

2 A iA B C F

D

E

v

Figure P 3.2-1

P 3.2-2 Determine the values of i2, i4, v2, v3, and v6 in Figure

P 3.2-2.

6 V 2 A

+

– +

–

+

–

+

++

–

––

–2 V

6 A

4 V

3 A

–3 Ai2 i4A B D

C E

Fv2

v3

v6

Figure P 3.2-2

P 3.2-3 Consider the circuit shown in Figure P 3.2-3.

(a) Suppose that R1¼ 8 V and R2¼ 4 V. Find the current i and

the voltage v.

(b) Suppose, instead, that i¼ 2.25 A and v¼ 42 V. Determine

the resistances R1 and R2.

(c) Suppose, instead, that the voltage source supplies 24 W of

power and that the current source supplies 9 W of power.

Determine the current i, the voltage v, and the resistances

R1 and R2.

12 V 3 A

+

–

+
–

i

R2

R1
v

Figure P 3.2-3

P 3.2-4 Determine the power absorbed by each of the resistors

in the circuit shown in Figure P 3.2-4.

Answer: The 4-V resistor absorbs 100 W, the 6-V resistor

absorbs 24 W, and the 8-V resistor absorbs 72 W.

12 V 20 V

3 A

6 Ω 4 Ω

8 Ω

+
–

+
–

Figure P 3.2-4

P 3.2-5 Determine the power absorbed by each of the

resistors in the circuit shown in Figure P 3.2-5.

Answer: The 4-V resistor absorbs 16 W, the 6-V resistor

absorbs 24 W, and the 8-V resistor absorbs 8 W.

6 V

8 V

8 V

2 A 12 V

6 Ω 8 Ω

4 Ω

+
–

+
–

+–

+–

Figure P 3.2-5

P 3.2-6 Determine the power supplied by each voltage source

in the circuit of Figure P 3.2-6.

Answer: The 2-V voltage source supplies 2 mW and the 3-V

voltage source supplies "6 mW.

3 mA

5 mA

3 V

+– +–

2 V

2 mA

Figure P 3.2-6

P 3.2-7 What is the value of the resistance R in Figure

P 3.2-7.

Hint: Assume an ideal ammeter. An ideal ammeter is

equivalent to a short circuit.

Answer: R¼ 4 V

12 V 2 A

1 A

Ammeter

R

+
–

Figure P 3.2-7

Problem available in WileyPLUS at instructor’s discretion.
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P 3.2-8 The voltmeter in Figure P 3.2-8 measures the

value of the voltage across the current source to be 56 V.

What is the value of the resistance R?

Hint: Assume an ideal voltmeter. An ideal voltmeter is equiv-

alent to an open circuit.

Answer: R¼ 10 V

24 V 8 A
–
+

56 V

Voltmeter

R

Figure P 3.2-8

P 3.2-9 Determine the values of the resistances R1 and R2

in Figure P 3.2-9.

2 Ω 7 Ω

5 Ω

12 V
+
–

3.71 V

Voltmeter

5.61 V

Voltmeter

R1

R2

Figure P 3.2-9

P 3.2-10 The circuit shown in Figure P 3.2-10 consists of

five voltage sources and four current sources. Express the

power supplied by each source in terms of the voltage source

voltages and the current source currents.

i4

i1

i2
+

++

–

+ –

+ –+

+

–

–
+
–

–

– +

–

i3

i5 i6

i8 i9

i7v6

v9

v7

v3

v5

v8

v4

v2

v1

Figure P 3.2-10

P 3.2-11 Determine the power received by each of the resis-

tors in the circuit shown in Figure P 3.2-11.

6 Ω

8 Ω 20 Ω

5 Ω10 V

15 V0.3 A

+

–

+

–

+

–

+ –

+ –

+–

+
–

+–+–

0.2 A

0.5 A

i8

i2

i7

i6i9i5

v2 v3

v9

v7v5v4

v1

Figure P 3.2-11

P 3.2-12 Determine the voltage and current of each of the

circuit elements in the circuit shown in Figure P 3.2-12.

Hint: You’ll need to specify reference directions for the

element voltages and currents. There is more than one way

to do that, and your answers will depend on the reference

directions that you choose.

15 V
+
– 0.25 A

0.75 A

60 Ω 20 Ω

10 Ω
Figure P 3.2-12

P 3.2-13 Determine the value of the current that is measured

by the meter in Figure P 3.2-13.

P 3.2-14 Determine the value of the voltage that is measured

by the meter in Figure P 3.2-14.

Voltmeter

5 i124 V+
–

48 �

4 �

i1

Figure P 3.2-14

i1

20 V+
–

+

–

Ammeter

25i1

50 �15 �

Figure P 3.2-13
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P 3.2-15 Determine the value of the voltage that is

measured by the meter in Figure P 3.2-15.

Voltmeter
+

–
80i10.25 A

60 �

20 �

i1

Figure P 3.2-15

P 3.2-16 The voltage source in Figure P 3.2-16 supplies 3.6 W

of power. The current source supplies 4.8 W. Determine the

values of the resistances R1 and R2.

12 V 0.5 A

R1

R2
+
–

Figure P 3.2-16

P 3.2-17 Determine the current i in Figure P 3.2-17.

Answer: i¼ 4 A

2 A24 V+
–

i 4 Ω

4 Ω

Figure P 3.2-17

P 3.2-18 Determine the value of the current im in Figure

P 3.2-18a.

im

im

2/5 va

2/5 va3 A

3 A

(a)

( b)
3 A

18 V

12 V
c

a
b

d

6 Ω

4 Ω

6 Ω

4 Ω

3 A

+

–

+ +

+–

–

–

va

va

Figure P 3.2-18 (a) A circuit containing a VCCS. (b) The circuit

after labeling the nodes and some element currents and voltages.

Hint: Apply KVL to the closed path a-b-d-c-a in Figure

P 3.2-18b to determine va. Then apply KCL at node b to find im.

Answer: im¼ 9 A

P 3.2-19 Determine the value of the voltage v6 for the

circuit shown in Figure P 3.2-19.

250 mA

220 mA

v5 = 10 i2

12 V

750 �

250 �
+

+

–

–

+ –v6i2

Figure P 3.2-19

P 3.2-20 Determine the value of the voltage v6 for the circuit

shown in Figure P 3.2-20.

25 mA

12 V

+ –

+

–
+
–

+ –

15 mA

50 �
25 �

v6

v2

v5 = 10v2

Figure P 3.2-20

P 3.2-21 Determine the value of the voltage v5 for the

circuit shown in Figure P 3.2-21.

i6 = 0.10v2

12 V 18 V

+ –

+ –
+
–

+
–

250 mA

25 Ω

45 Ω

v2

v5

Figure P 3.2-21

P 3.2-22 Determine the value of the voltage v5 for the circuit

shown in Figure P 3.2-22.

i6 = 1.5v2

250 mA

18 V
+ –

+
–

+
– 12 V

40 Ω48 Ω

v5

i2

Figure P 3.2-22
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P 3.2-23 Determine the value of the voltage v6 for the

circuit shown in Figure P 3.2-23.

i2
10i2

12 V
12 V 18 V

50 Ω
25 Ω

v6

+

–

+
– +

–

+ –

+
–

Figure P 3.2-23

P 3.2-24 Determine the value of the voltage v5 for the

circuit shown in Figure P 3.2-24.

25 mA

250 mA15 mA

+ – + –

0.5v2

25 Ω250 Ω

v5v2

Figure P 3.2-24

P 3.2-25 The voltage source in the circuit shown in

Figure P 3.2-25 supplies 2 W of power. The value of the

voltage across the 25-V resistor is v2¼ 4 V. Determine

the values of the resistance R1 and of the gain G of the VCCS.

R1

Gv220 V
+

–

+
–

25 Ω v2

Figure P 3.2-25

P 3.2-26 Consider the circuit shown in Figure P 3.2-26.

Determine the values of

(a) The current ia in the 20-V resistor.

(b) The voltage vb across the 10-V resistor.

(c) The current ic in the independent voltage source.

ia

ic25 V

+ –+ –

+ –

4 ia

10 Ω

20 Ω

vb

Figure P 3.2-26

P 3.2-27 Consider the circuit shown in Figure P 3.2-27.

(a) Determine the values of the resistances.

(b) Determine the values of the power supplied by each current

source.

(c) Determine the values of the power received by each

resistor.

3 A

+ –
+

–
Rc

RbRa

4 V

−1.5 A
12 V

2 A

+ –−3 V

Figure P 3.2-27

P 3.2-28 Consider the circuit shown in Figure P 3.2-28.

(a) Determine the value of the power supplied by each

independent source.

(b) Determine the value of the power received by each

resistor.

(c) Is power conserved?

3 mA
2 k�

+ –
12 V

3 k�2 mA

18 k�

Figure P 3.2-28

P 3.2-29 The voltage across the capacitor in Figure

P 3.2-29 is v tð Þ ¼ 24 " 10e"25t V for t * 0. Determine the

voltage source current i(t) for t > 0.

n(t)

i(t)

+

–

+– C 80 Ω

20 Ω

30 V

Figure P 3.2-29

P 3.2-30 The current the inductor in Figure P 3.2-30 is given

by i tð Þ ¼ 8 " 6e"25t A for t * 0. Determine the voltage v(t)

across the 80-V resistor for t > 0.
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10 A 80 � Lv (t )
+

–

20 �
i (t )

Figure P 3.2-30

Section 3.3 Series Resistors and Voltage Division

P 3.3-1 Use voltage division to determine the voltages v1, v2,

v3, and v4 in the circuit shown in Figure P 3.3-1.

6 Ω 3 Ω

4 Ω

5 Ω
+
–12 V v4

–

+

v3 –+v2 –+v1 –+

Figure P 3.3-1

P 3.3-2 Consider the circuits shown in Figure P 3.3-2.

(a) Determine the value of the resistance R in Figure P 3.3-2b

that makes the circuit in Figure P 3.3-2b equivalent to the

circuit in Figure P 3.3-2a.

(b) Determine the current i in Figure P 3.3-2b. Because the

circuits are equivalent, the current i in Figure P 3.3-2a is

equal to the current i in Figure P 3.3-2b.

(c) Determine the power supplied by the voltage source.

+
–28 V

+
–28 V

6 Ω 3 Ω 2 Ω

4 Ω
i

i

(a)

(b)

R

Figure P 3.3-2

P 3.3-3 The ideal voltmeter in the circuit shown in Figure

P 3.3-3 measures the voltage v.

(a) Suppose R2¼ 50 V. Determine the value of R1.

(b) Suppose, instead, R1 ¼ 50 V. Determine the value of

R2.

(c) Suppose, instead, that the voltage source supplies 1.2 W of

power. Determine the values of both R1 and R2.

v

–

+

+
–12 V

R1
8

Voltmeter

. 0 0

R2

Figure P 3.3-3

P 3.3-4 Determine the voltage v in the circuit shown in

Figure P 3.3-4.

+
– 12 V

16 Ω 4 Ω

8 Ω 8 Ω

v –+

Figure P 3.3-4

P 3.3-5 The model of a cable and load resistor connected

to a source is shown in Figure P 3.3-5. Determine the appro-

priate cable resistance R so that the output voltage vo remains

between 9 V and 13 V when the source voltage vs varies

between 20 V and 28 V. The cable resistance can assume

integer values only in the range 20 < R < 100 V.

vovs

R

R

Cable
+
–

+

–

100 Ω

Figure P 3.3-5 Circuit with a cable.

P 3.3-6 The input to the circuit shown in Figure P 3.3-6 is

the voltage of the voltage source va. The output of this circuit is

the voltage measured by the voltmeter vb. This circuit produces

an output that is proportional to the input, that is,

vb ¼ k va

where k is the constant of proportionality.

(a) Determine the value of the output, vb, when R¼ 180 V and

va¼ 18 V.

(b) Determine the value of the power supplied by the voltage

source when R¼ 180 V and va¼ 18 V.

(c) Determine the value of the resistance, R, required to cause

the output to be vb¼ 2 V when the input is va¼ 18 V.

(d) Determine the value of the resistance, R, required to cause

vb¼ 0.2va ðthat is, the value of the constant of proportion-

ality is k ¼ 0:2Þ.
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vbva R Voltmeter+
–

+

–

120 Ω

Figure P 3.3-6

P 3.3-7 Determine the value of voltage v in the circuit

shown in Figure P 3.3-7.

12 V

12 V

18 V

+
–

+

–

+ –

+ –

20 Ω5 Ω

15 Ω

10 Ω v

Figure P 3.3-7

P 3.3-8 Determine the power supplied by the dependent

source in the circuit shown in Figure P 3.3-8.

ia = 0.2 va

10 Ω50 Ω

+ –

+ –

120 V

va

Figure P 3.3-8

P 3.3-9 A potentiometer can be used as a transducer to convert

the rotational position of a dial to an electrical quantity. Figure

P 3.3-9 illustrates this situation. Figure P 3.3-9a shows a

potentiometer having resistance Rp connected to a voltage

source. The potentiometer has three terminals, one at each

end and one connected to a sliding contact called a wiper. A

voltmeter measures the voltage between the wiper and one end

of the potentiometer.

Figure P 3.3-9b shows the circuit after the potentiometer

is replaced by a model of the potentiometer that consists of two

resistors. The parameter a depends on the angle y of the dial.

Here a ¼ y
360(

, and y is given in degrees. Also, in Figure

P 3.3-9b, the voltmeter has been replaced by an open circuit,

and the voltage measured by the voltmeter vm has been labeled.

The input to the circuit is the angle y, and the output is the

voltage measured by the meter vm.

(a) Show that the output is proportional to the input.

(b) Let Rp¼ 1 kV and vs¼ 24 V. Express the output as a

function of the input. What is the value of the output when

y¼ 45(? What is the angle when vm¼ 10 V?

Rp

(1 – a) Rp

aRp
+
–

+

–

+
–

Voltmeter

t

t

w

w

b

b

(a)

( b)

vs

vs vm

Figure P 3.3-9

P 3.3-10 Determine the value of the voltage measured by the

meter in Figure P 3.3-10.

4ia

8 Ω 3 Ω

5 Ω
+

–

+
– 24 V

Voltmeter

ia

Figure P 3.3-10

P 3.3-11 For the circuit of Figure P 3.3-11, find the

voltage v3 and the current i and show that the power delivered

to the three resistors is equal to that supplied by the source.

Answer: v3¼ 3 V, i¼ 1 A
i

3 Ω
3 Ω

6 Ω+
–12 V

+

+

–

–

v2

v3

+ –v1

Figure P 3.3-11

P 3.3-12 Consider the voltage divider shown in Figure

P 3.3-12 when R1 ¼ 8 V. It is desired that the output power

absorbed by R1 be 4.5 W. Find the voltage vo and the required

source vs.

R1
2 Ω

2 Ω 4 Ω

+

–

+
–

vs vo

Figure P 3.3-12
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P 3.3-13 Consider the voltage divider circuit shown in Figure

P 3.3-13. The resistor R represents a temperature sensor. The

resistance R, in V, is related to the temperature T, in (C, by the

equation

R ¼ 50þ
1

2
T

(a) Determine the meter voltage, vm, corresponding to tem-

peratures 0(C, 75(C, and 100(C.

(b) Determine the temperature T corresponding to the meter

voltages 8 V, 10 V, and 15 V.

R vm

Voltmeter

+
–

+

–

75 Ω

20 Ω

Figure P 3.3-13

P 3.3-14 Consider the circuit shown in Figure P 3.3-14.

(a) Determine the value of the resistance R required to cause

vo ¼ 17:07 V.

(b) Determine the value of the voltage vo when R = 14 V.

(c) Determine the power supplied by the voltage source when

vo ¼ 14:22 V. R

vo32 V
+
–

+

–

8 Ω

Figure P 3.3-14

P 3.3-15 Figure P 3.3-15 shows four similar but slightly

different circuits. Determine the values of the voltages v1, v2,

v3, and v4.

+– v1

−

+
+– v2

−

+

26 V 30 �+– v3

−

+
70 �

+– v4

−

+
26 V

26 V 26 V

70 �

130 �

70 �

60 �

30 �

70 �

Figure P 3.3-15

P 3.3-16 Figure P 3.3-16 shows four similar but slightly

different circuits. Determine the values of the voltages v1, v2,

v3, and v4.

v3

−

++–

v1

−

++ –

60 � v2

−

+
40 �

+–
 28 V

v4

−

++ –

 28 V

 28 V  28 V

60 � 20 �30 �40 �

30 �20 �

Figure P 3.3-16

P 3.3-17 The input to the circuit shown in Figure P 3.3-17 is

the voltage source voltage

v s tð Þ ¼ 12 cos 377 tð Þ mV

The output is the voltage vo(t). Determine vo(t).

10 kΩ
+

–
v o (t )

+

–
v a110 kΩ 1000 v a 9.9 kΩ

100 Ω

v s (t ) +–
+–

Figure P 3.3-17

Section 3.4 Parallel Resistors and Current Division

P 3.4-1 Use current division to determine the currents i1,

i2, i3, and i4 in the circuit shown in Figure P 3.4-1.

i1 i2 i3 i4
4 A 6 Ω 3 Ω 2 Ω 1 Ω

Figure P 3.4-1

P 3.4-2 Consider the circuits shown in Figure P 3.4-2.

(a) Determine the value of the resistance R in Figure P 3.4-2b

that makes the circuit in Figure P 3.4-2b equivalent to the

circuit in Figure P 3.4-2a.

(b) Determine the voltage v in Figure P 3.4-2b. Because the

circuits are equivalent, the voltage v in Figure P 3.4-2a is

equal to the voltage v in Figure P 3.4-2b.

(c) Determine the power supplied by the current source.

R

(a) ( b)

6 A
6 A

+

–

+

–

6 Ω 12 Ω 4 Ω vv

Figure P 3.4-2
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P 3.4-3 The ideal voltmeter in the circuit shown in Figure

P 3.4-3 measures the voltage v.

(a) Suppose R2¼ 6 V. Determine the value of R1 and of the

current i.

(b) Suppose, instead, R1¼ 6 V. Determine the value of R2 and

of the current i.

(c) Instead, choose R1 and R2 to minimize the power absorbed

by any one resistor.

R1 R2

i
2 A

8 . 0 0

+

Voltmeter

–

v

Figure P 3.4-3

P 3.4-4 Determine the current i in the circuit shown in Figure

P 3.4-4.

16 Ω

8 Ω

8 Ω

8 Ω

i
6 A

Figure P 3.4-4

P 3.4-5 Consider the circuit shown in Figure P 3.4-5 when

4 V , R1 , 6 V and R2¼ 10 V. Select the source is so that

vo remains between 9 V and 13 V.

voR1
R2is

+

–

Figure P 3.4-5

P 3.4-6 Figure P 3.4-6 shows a transistor amplifier. The values

of R1 and R2 are to be selected. Resistances R1 and R2 are used to

bias the transistor, that is, to create useful operating conditions. In

this problem, we want to select R1 and R2 so that vb¼ 5 V. We

expect the value of ib to be approximately 10mA. When i1, 10ib,

it is customary to treat ib as negligible, that is, to assume ib¼ 0.

In that case, R1 and R2 comprise a voltage divider.

(a) Select values for R1 and R2 so that vb¼ 5 V, and the

total power absorbed by R1 and R2 is no more than 5 mW.

(b) An inferior transistor could cause ib to be larger than

expected. Using the values of R1 and R2 from part (a),

determine the value of vb that would result from ib¼ 15 mA.

vo
vb

R1

R2 Re

Rc

ib

i1

15 V

+

–

+
–

+

–

Figure P 3.4-6

P 3.4-7 Determine the value of the current i in the circuit

shown in Figure P 3.4-7.

12 Ω

3 Ω

6 Ω

2 A

0.5 A

1.5 A

i

Figure P 3.4-7

P 3.4-8 Determine the value of the voltage v in Figure P 3.4-8.

v

40 Ω 20 Ω

40 Ω

a

+ –

3 mA

b

Figure P 3.4-8

P 3.4-9 Determine the power supplied by the dependent

source in Figure P 3.4-9.

ia

vb = 50 ia

75 Ω25 Ω

30 mA

+

–

Figure P 3.4-9
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P 3.4-10 Determine the values of the resistances R1 and R2

for the circuit shown in Figure P 3.4-10.

R1

R240 Ω24 V

8 V+

+

–

–

1.6 A

Figure P 3.4-10

P 3.4-11 Determine the values of the resistances R1 and R2

for the circuit shown in Figure P 3.4-11.

R1

R2

+ –

80 Ω24 mA 19.2 mA

0.384 V

Figure P 3.4-11

P 3.4-12 Determine the value of the current measured by the

meter in Figure P 3.4-12.

30 Ω 10 Ω

+

–

10 Ω1.2 A

Ammeter

0.2 va

va

Figure P 3.4-12

P 3.4-13 Consider the combination of resistors shown in

Figure P 3.4-13. Let Rp denote the equivalent resistance.

(a) Suppose 20 V , R , 320 V. Determine the corresponding

range of values of Rp.

(b) Suppose, instead, R ¼ 0 (a short circuit). Determine the

value of Rp.

(c) Suppose, instead, R ¼ 1 (an open circuit). Determine the

value of Rp.

(d) Suppose, instead, the equivalent resistance is Rp ¼ 40 V.

Determine the value of R.

R80 Ω

Figure P 3.4-13

P 3.4-14 Consider the combination of resistors shown in

Figure P 3.4-l4. Let Rp denote the equivalent resistance.

(a) Suppose 40 V , R , 400 V. Determine the corresponding

range of values of Rp.

(b) Suppose, instead, R¼ 0 (a short circuit). Determine the

value of Rp.

(c) Suppose, instead, R ¼ 1 (an open circuit). Determine the

value of Rp.

(d) Suppose, instead, the equivalent resistance is Rp ¼ 80 V.

Determine the value of R.

R

40 Ω

160 Ω

Figure P 3.4-14

P 3.4-15 Consider the combination of resistors shown in

Figure P 3.4-15. Let Rp denote the equivalent resistance.

(a) Suppose 50 V , R , 800 V. Determine the corresponding

range of values of Rp.

(b) Suppose, instead, R ¼ 0 (a short circuit). Determine the

value of Rp.

(c) Suppose, instead, R ¼ 1 (an open circuit). Determine the

value of Rp.

(d) Suppose, instead, the equivalent resistance is Rp ¼ 150 V.

Determine the value of R.

R

50 Ω

200 Ω

Figure P 3.4-15

P 3.4-16 The input to the circuit shown in Figure P 3.4-16 is

the source current is. The output is the current measured by

the meter io. A current divider connects the source to the

meter. Given the following observations:

(a) The input is ¼ 5 A causes the output to be io ¼ 2 A.

(b) When is ¼ 2 A, the source supplies 48 W.
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Determine the values of the resistances R1 and R2.

R1

R2

io

is

Ammeter

Figure P 3.4-16

P 3.4-17 Figure P 3.4-17 shows four similar but slightly

different circuits. Determine the values of the currents i1, i2,

i3, and i4.

45 � 90 �300 mA
i 2

75 � 25 �320 mA

i 1

15 � 60 �500 mA

i 3

120 � 30 �250 mA
i 4

Figure P 3.4-17

P 3.4-18 Figure P 3.4-18 shows four similar but slightly

different circuits. Determine the values of the currents i1, i2,

i3, and i4.

240 mA
i1

i2
240 mA

60 �

40 �

60 �

30 �

60 �

i4

i3
240 mA

240 mA

60 �

20 � 15 �
Figure P 3.4-18

P 3.4-19 The input to the circuit shown in Figure P 3.4-19 is

the current source current Is. The output is the current io. The

output of this circuit is proportion to the input, that is

io ¼ k Is

Determine the value of the constant of proportionality k.
io

Is R R R

R

R

Figure P 3.4-19

P 3.4-20 The input to the circuit shown in Figure P 3.4-20 is

the voltage source voltage Vs. The output is the voltage vo.

The output of this circuit is proportion to the input, that is

vo ¼ k V s

Determine the value of the constant of proportionality k.

Vs R R R

R

R

+–
R

R

+

–
vo

Figure P 3.4-20

Section 3.5 Series Voltage Sources and Parallel

Current Sources

P 3.5-1 Determine the power supplied by each source in

the circuit shown in Figure P 3.5-1.

2 Ω 2 Ω

3 V

8 V

1.25 A3 A

+ –

+ –

Figure P 3.5-1
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P 3.5-2 Determine the power supplied by each source in the

circuit shown in Figure P 3.5-2.

20 Ω 5 Ω 7 Ω3 A

3 V

2 V 0.5 A

+ –

+–

Figure P 3.5-2

P 3.5-3 Determine the power received by each resistor in the

circuit shown in Figure P 3.5-3.

5 Ω 7 Ω

8 V

2 A 1.25 A0.25 A

3 V

+ –

+ –

Figure P 3.5-3

Section 3.6 Circuit Analysis

P 3.6-1 The circuit shown in Figure P 3.6-1a has been

divided into two parts. In Figure P 3.6-1b, the right-hand part

has been replaced with an equivalent circuit. The left-hand part

of the circuit has not been changed.

(a) Determine the value of the resistance R in Figure P 3.6-1b

that makes the circuit in Figure P 3.6-1b equivalent to the

circuit in Figure P 3.6-1a.

(b) Find the current i and the voltage v shown in Figure

P 3.6-1b. Because of the equivalence, the current i and

the voltage v shown in Figure P 3.6-1a are equal to the

current i and the voltage v shown in Figure P 3.6-1b.

(c) Find the current i2, shown in Figure P 3.6-1a, using current

division.

v

v

R

i

i i2

( b)

(a)

32 Ω

32 Ω 48 Ω 24 Ω

16 Ω

8 Ω

8 Ω

24 V

24 V

+

–

+

–

+
–

+
–

Figure P 3.6-1

P 3.6-2 The circuit shown in Figure P 3.6-2a has been

divided into three parts. In Figure P 3.6-2b, the rightmost part

has been replaced with an equivalent circuit. The rest of the

circuit has not been changed. The circuit is simplified further in

Figure 3.6-2c. Now the middle and rightmost parts have been

replaced by a single equivalent resistance. The leftmost part of

the circuit is still unchanged.

(a) Determine the value of the resistance R1 in Figure P 3.6-2b

that makes the circuit in Figure P 3.6-2b equivalent to

the circuit in Figure P 3.6-2a.

(b) Determine the value of the resistance R2 in Figure P 3.6-2c

that makes the circuit in Figure P 3.6-2c equivalent to the

circuit in Figure P 3.6-2b.

(c) Find the current i1 and the voltage v1 shown in Figure

P 3.6-2c. Because of the equivalence, the current i1 and the

voltage v1 shown in Figure P 3.6-2b are equal to the current

i1 and the voltage v1 shown in Figure P 3.6-2c.

Hint: 24 ¼ 6(i1"2) þ i1R2

(d) Find the current i2 and the voltage v2 shown in Figure

P 3.6-2b. Because of the equivalence, the current i2 and

the voltage v2 shown in Figure P 3.6-2a are equal to the

current i2 and the voltage v2 shown in Figure

P 3.6-2b.

Hint: Use current division to calculate i2 from i1.

(e) Determine the power absorbed by the 3-V resistance

shown at the right of Figure P 3.6-2a.

i1

(a)

i2

v2v1

+

–

+
–

+

–

6 Ω

6 Ω 3 Ω6 Ω12 Ω

8 Ω 4 Ω

2 A24 V

v1 v2 R1

( b)

i2i1
+

–

+
–

+

–

6 Ω 8 Ω

12 Ω 6 Ω24 V 2 A

v1 R2

(c)

i1
+

–

+
–

6 Ω

24 V 2 A

Figure P 3.6-2

P 3.6-3 Find i, using appropriate circuit reductions and the

current divider principle for the circuit of Figure P 3.6-3.
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i
+
–

2 Ω 2 Ω 2 Ω

1 Ω 1 Ω 1 Ω 1 Ω

1 Ω12 V

Figure P 3.6-3

P 3.6-4

(a) Determine values of R1 and R2 in Figure P 3.6-4b that make

the circuit in Figure P 3.6-4b equivalent to the circuit in

Figure P 3.6-4a.

(b) Analyze the circuit in Figure P 3.6-4b to determine the

values of the currents ia and ib.

(c) Because the circuits are equivalent, the currents ia
and ib shown in Figure P 3.6-4b are equal to the currents

ia and ib shown in Figure P 3.6-4a. Use this fact to

determine values of the voltage v1 and current i2 shown in

Figure P 3.6-4a.

+

+

–
+

–

–

10 � 8 �

8 � 12 �9 �27 V 24 �

v1

ia

3ia

ib

i2

(a)

+ +
27 V 3ia

ib

ia

– –

(b)

R1

R2

Figure P 3.6-4

P 3.6-5 The voltmeter in the circuit shown in Figure P 3.6-5

shows that the voltage across the 30-V resistor is 6 volts.

Determine the value of the resistance R1.

Hint: Use the voltage division twice.

Answer: R1¼ 40 V

R1
+
–

10 � 10 �

30 �

Voltmeter

6 0 0

12 V

Figure P 3.6-5

P 3.6-6 Determine the voltages va and vc and the currents ib
and id for the circuit shown in Figure P 3.6-6.

Answer: va¼ "2 V, vc¼ 6 V, ib¼"16 mA, and id¼ 2 mA

+

–

vc
+

–

va

ib
id

18 V
+
–

10 k� 2500 � 2 k�

1 k�
10 mA

Figure P 3.6-6

P 3.6-7 Determine the value of the resistance R in Figure

P 3.6-7.

Answer: R¼ 28 kV

24 V

1 mA

+
–

12 k�

21 k� R

Figure P 3.6-7

P 3.6-8 Most of us are familiar with the effects of a mild

electric shock. The effects of a severe shock can be devastating

and often fatal. Shock results when current is passed through the

body. A person can be modeled as a network of resistances.

Consider the model circuit shown in Figure P 3.6-8. Determine

the voltage developed across the heart and the current flowing

through the heart of the person when he or she firmly grasps one

end of a voltage source whose other end is connected to the

floor. The heart is represented by Rh. The floor has resistance to

current flow equal to Rf, and the person is standing barefoot on

the floor. This type of accident might occur at a swimming pool

or boat dock. The upper-body resistance Ru and lower-body

resistance RL vary from person to person.

50 V +
– 500 �

Ru = 20 �

Rf = 200 �

Rh = 100 �

RL = 30 �
Figure P 3.6-8

P 3.6-9 Determine the value of the current i in Figure

P 3.6-9.

Answer: i¼ 0.5 mA

i
12 V

+
–

3 k� 3 k�

6 k� 6 k� 6 k�

Figure P 3.6-9
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P 3.6-10 Determine the values of ia, ib, and vc in Figure

P 3.6-10.

ia

ib
60 V+

+

–

–

15 �

20 �

10 �
vc

Figure P 3.6-10

P 3.6-11 Find i and Req a-b if vab¼ 40 V in the circuit of

Figure P 3.6-11.

Answer: Req a"b¼ 8 V, i¼ 5=6 A

b

a

12 �

20 �

3 �

2 �
5 �

6 �

Req a–b

i

Figure P 3.6-11

P 3.6-12 The ohmmeter in Figure P 3.6-12 measures the

equivalent resistance Req of the resistor circuit. The value of

the equivalent resistance Req depends on the value of the

resistance R.

(a) Determine the value of the equivalent resistance Req when

R¼ 9 V.

(b) Determine the value of the resistance R required to cause

the equivalent resistance to be Req¼ 12 V.

Ohmmeter
9 �

10 � 17 �

R

Req

Figure P 3.6-12

P 3.6-13 Find the Req at terminals a-b in Figure P 3.6-13. Also

determine i, i1, and i2.

Answer: Req¼ 8 V, i¼ 5 A, i1¼ 5=3 A, i2¼ 5=2 A

i1

i2

i

+

12 �
1 �

6 �
2 �

2 �

2 �

40 V

a

b

–

Req

Figure P 3.6-13

P 3.6-14 All of the resistances in the circuit shown in Figure

P 3.6-14 are multiples of R. Determine the value of R.

R
R

R
R
2R

2R
2R

2R

4R

3R

0.1 A

12 V+
–

Figure P 3.6-14

P 3.6-15 The circuit shown in Figure P 3.6-15 contains seven

resistors, each having resistance R. The input to this circuit is the

voltage source voltage vs. The circuit has two outputs, va and vb.

Express each output as a function of the input.

vs va vb

R

R

R
R

R
R

R

+

+

–

–

+

–

Figure P 3.6-15

P 3.6-16 The circuit shown in Figure P 3.6-16 contains

three 10-V, 1=4-W resistors. (Quarter-watt resistors can dissi-

pate 1=4 W safely.) Determine the range of voltage source

voltages vs such that none of the resistors absorbs more than

1=4 W of power.

vovs
+

+

–

–

10 �

10 � 10 �

Figure P 3.6-16

P 3.6-17 The four resistors shown in Figure P 3.6-17 represent

strain gauges. Strain gauges are transducers that measure the strain

that results when a resistor is stretched or compressed. Strain
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gauges are used to measure force, displacement, or pressure. The

four strain gauges in Figure P 3.6-17 each have a nominal

(unstrained) resistance of 200 V and can each absorb 0.5 mW

safely. Determine the range of voltage source voltages vs such that

no strain gauge absorbs more than 0.5 mW of power.

vs

vo

+

−
200 �

200 � 200 �

200 �

+ –

Figure P 3.6-17

P 3.6-18 The circuit shown in Figure P 3.6-18b has been

obtained from the circuit shown in Figure P 3.6-18a by

replacing series and parallel combinations of resistances by

equivalent resistances.

(a) Determine the values of the resistances R1, R2, and R3

in Figure P 3.6-18b so that the circuit shown in Figure

P 3.6-18b is equivalent to the circuit shown in Figure

P 3.6-18a.

(b) Determine the values of v1, v2, and i in Figure

P 3.6-18b.

(c) Because the circuits are equivalent, the values of v1, v2, and

i in Figure P 3.6-18a are equal to the values of v1, v2, and i

in Figure P 3.6-18b. Determine the values of v4, i5, i6, and

v7 in Figure P 3.6-18a.

+

+

+

–

–

–

24 V+
– +

–

10 �
30 �

4 �

9 �18 �

6 �
6 �6 �

4 �

a

c

b

d

10 �

(a)

v1

i5

i6

i

v2

v7

v4

R1

R3

R2

24 V+
–

4 �

a

c

b

d

(b)

i

+– v2

+ –v1

Figure P 3.6-18

P 3.6-19 Determine the values of v1, v2, i3, v4, v5, and i6
in Figure P 3.6-19.

+

+

–

–

24 V +
–

4 �

6 �

80 �20 �

30 �

4 �

c

a

d

b

12 �

16 �

6 �

10 �
10 �

v1

+– v2

v5

+– v4

i3

i6

Figure P 3.6-19

P 3.6-20 Determine the values of i, v, and Req for the circuit

shown in Figure P 3.6-20, given that vab¼ 18 V.

b

a

10 �

6 �

36 �

30 �

9 �72 �

Req

+

–

v

i

Figure P 3.6-20

P 3.6-21 Determine the value of the resistance R in the circuit

shown in Figure P 3.6-21, given that Req¼ 9 V .

Answer: R¼ 15 V

A

B

12 �

5 � 30 �

24 �

4 �

8 �

Req

R

Figure P 3.6-21

P 3.6-22 Determine the value of the resistance R in the circuit

shown in Figure P 3.6-22, given that Req¼ 40 V.
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R
R

R
R R

R
R

RReq

Figure P 3.6-22

P 3.6-23 Determine the values of r, the gain of the CCVS, and g,

the gain of the VCCS, for the circuit shown in Figure P 3.6-23.

+

+

–

–

+

+

–

–vb

ria

ia

gvb12 V 9.74 V 6.09 V
+
–

8 �
8 � 8 �

Figure P 3.6-23

P 3.6-24 The input to the circuit in Figure P 3.6-24 is the

voltage of the voltage source vs. The output is the voltage

measured by the meter, vo. Show that the output of this circuit is

proportional to the input. Determine the value of the constant of

proportionality.

10 va

+ –vo

+ –va

vs

+ –

20 Ω

8 Ω

20 Ω

20 Ω

12 Ω

Voltmeter

+–

Figure P 3.6-24

P 3.6-25 The input to the circuit in Figure P 3.6-25 is the

voltage of the voltage source vs. The output is the current

measured by the meter io. Show that the output of this circuit is

proportional to the input. Determine the value of the constant of

proportionality.

vs
Ammeter

+ –

2 �
20 �

40 �40 �

10 �

50 ia

io

ia
Figure P 3.6-25

P 3.6-26 Determine the voltage measured by the voltmeter in

the circuit shown in Figure P 3.6-26.
ia

8 ia

24 V

+

–

+
–

10 �

40 � 10 �

4 �

Voltmeter

Figure P 3.6-26

P 3.6-27 Determine the current measured by the ammeter

in the circuit shown in Figure P 3.6-27.

+

–

va

8 va

3 A

2 Ω

4 Ω3 Ω

10 Ω

Ammeter

Figure P 3.6-27

P 3.6-28 Determine the value of the resistance R that causes

the voltage measured by the voltmeter in the circuit shown in

Figure P 3.6-28 to be 6 V.

Voltmeter

+

–

ia

5 ia R

3 A

40 �

10 �

18 �

Figure P 3.6-28
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P 3.6-29 The input to the circuit shown in Figure P 3.6-29

is the voltage of the voltage source vs. The output is the current

measured by the meter im.

(a) Suppose vs ¼ 15 V. Determine the value of the resistance R

that causes the value of the current measured by the meter

to be im ¼ 12 A.

(b) Suppose vs¼ 15 V and R¼ 80 V. Determine the current

measured by the ammeter.

(c) Suppose R¼ 24 V. Determine the value of the input

voltage vs that causes the value of the current measured

by the meter to be im¼ 3 A.

5 va

 im

+

–

va
vs

18 �
12 �

16 �
Ammeter

+
–

R

Figure P 3.6-29

P 3.6-30 The ohmmeter in Figure P 3.6-30 measures the

equivalent resistance of the resistor circuit connected to the

meter probes.

(a) Determine the value of the resistance R required to cause

the equivalent resistance to be Req¼ 12 V.

(b) Determine the value of the equivalent resistance when

R¼ 14 V.

Req

Ohmmeter

4 Ω 2 Ω

20 ΩR

Figure P 3.6-30

P 3.6-31 The voltmeter in Figure P 3.6-31 measures the

voltage across the current source.

(a) Determine the value of the voltage measured by the meter.

(b) Determine the power supplied by each circuit element.

2 mA12 V
+
–

25 kΩ

Voltmeter

Figure P 3.6-31

P 3.6-32 Determine the resistance measured by the ohmmeter

in Figure P 3.6-32.

Ohmmeter

4 �
10 �

12 �

40 �

Figure P 3.6-32

P 3.6-33 Determine the resistance measured by the ohmmeter

in Figure P 3.6-33.

Ohmmeter

60 �60 �

60 � 60 �

Figure P 3.6-33

P 3.6-34 Consider the circuit shown in Figure P 3.6-34.

Given the values of the following currents and voltages:

i1 ¼ 0:625 A; v2 ¼ "25 V; i3 ¼ "1:25 A;
and v4 ¼ "18:75 V;

determine the values of R1, R2, R3, and R4.

v2

v2 v4

i3

i6

i1

i5

R2

R4

R3

R1

+ –

40 �

5 �

+

–

+

–

50 V
a

b

4

Figure P 3.6-34

P 3.6-35 Consider the circuits shown in Figure P 3.6-35. The

equivalent circuit is obtained from the original circuit by replacing

series and parallel combinations of resistors with equivalent

resistors. The value of the current in the equivalent circuit is

is ¼ 0.8 A. Determine the values of R1, R2, R5, v2, and i3.
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a

b

a

b

c

d

c

dv2+ –

– +

– +

40 V

original circuit

equivalent circuit

40 V

18 � 32 �

28 �

10 �
32 �R1

R2

is

is

i3

R56 �

Figure P 3.6-35

P 3.6-36 Consider the circuit shown in Figure P 3.6-36. Given

v2 ¼
2

3
vs; i3 ¼

1

5
i1; and v4 ¼

3

8
v2;

determine the values of R1, R2, and R4.

Hint: Interpret v2 ¼ 2
3

vs; i3 ¼ 1
5

i1; and v4 ¼ 3
8

v2 as current and

voltage division.

+

–

+

–

i1 i3

v4v2vs

R1

R2 R4
+
–

50 �

25 �
Figure P 3.6-36

P 3.6-37 Consider the circuit shown in Figure P 3.6-37. Given

i2 ¼
2

5
is; v3 ¼

2

3
v1; and i4 ¼

4

5
i2;

determine the values of R1, R2, and R4.

Hint: Interpret i2 ¼ 2
5

is; v3 ¼ 2
3

v1; and i4 ¼ 4
5

i2 as current and

voltage division.

+

–

+

–

is

i2 i4

v1 v3
R1 R4

R2

80 �

Figure P 3.6-37

P 3.6-38 Consider the circuit shown in Figure P 3.6-38.

(a) Suppose i3 ¼ 1
3

i1. What is the value of the resistance R?

(b) Suppose, instead, v2 ¼ 4.8 V. What is the value of the

equivalent resistance of the parallel resistors?

(c) Suppose, instead, R ¼ 20 V. What is the value of the

current in the 40-V resistor?

Hint: Interpret i3 ¼ 1
3

i1 as current division.

+

–

i1 i3

v2 R

40 �

24 V 20 �+
–

Figure P 3.6-38

P 3.6-39 Consider the circuit shown in Figure P 3.6-39.

(a) Suppose v3 ¼ 1
4

v1. What is the value of the resistance R?

(b) Suppose i2 ¼ 1.2 A. What is the value of the resistance R?

(c) Suppose R ¼ 70 V. What is the voltage across the

20-V resistor?

(d) Suppose R ¼ 30 V. What is the value of the current in this

30-V resistor?

Hint: Interpret v3 ¼ 1
4

v1 as voltage division.

+

–

i2

v1

+

–

v3

R

20 � 10 �2.4 A

Figure P 3.6-39

P 3.6-40 Consider the circuit shown in Figure P 3.6-40.

Given that the voltage of the dependent voltage source is

va ¼ 8 V, determine the values of R1 and vo.

vO

va = 20ib

ib

+ –

+ – +–

8 Ω

40 Ω
30 Ω

20 Ω

4 Ω R1

10 V

Figure P 3.6-40

P 3.6-41 Consider the circuit shown in Figure P 3.6-41.

Given that the current of the dependent current source is

ia ¼ 2 A, determine the values of R1 and io.

+ –vc

R1

io
2 A 10 �

45 �

15 �25 �

ia = 0.2vc

Figure P 3.6-41
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P 3.6-42 Determine the values of ia, ib, i2, and v1 in the circuit

shown in Figure P 3.6-42.

i2

ibia

v1

12 � 24 �4 ia

2 �8 �
5 �

20 �6 V

+ –

+–

Figure P 3.6-42

P 3.6-43 Determine the values of the resistance R and current

ia in the circuit shown in Figure P 3.6-43.

200 �

32 �

24 V R

ia

+–

48 �

8 V
+

–

Figure P 3.6-43

P 3.6-44 The input to the circuit shown in Figure P 3.6-44 is

the voltage of the voltage source, 32 V. The output is the

current in the 10-V resistor io. Determine the values of

the resistance R1 and of the gain of the dependent

source G that cause both the value of voltage across the

12 V to be va = 10.38 V and the value of the output current

to be io = 0.4151 A.

+– 12 � va

+

–

32 V

R1

G va 40 � 10 �
i o

Figure P 3.6-44

P 3.6-45 The equivalent circuit in Figure P 3.6-45 is obtained

from the original circuit by replacing series and parallel

combinations of resistors by equivalent resistors. The values

of the currents in the equivalent circuit are ia = 3.5 A and

ib ="1.5 A. Determine the values of the voltages v1 and v2

in the original circuit.

+–

+–
ia ib

+     v
1

_ +     v
2

_

150 V

150 V 5 A

5 A 40 �

60 �

25 � 35 �
80 �

50 �
30 �

original circuit

equivalent circuit
Figure P 3.6-45

P 3.6-46 Figure P 3.6-46 shows three separate, similar

circuits. In each a 12-V source is connected to a subcircuit

consisting of three resistors. Determine the values of

the voltage source currents i1, i2, and i3. Conclude that

while the voltage source voltage is 12 V in each circuit, the

voltage source current depends on the subcircuit connected to

the voltage source.

12 V
35 �

i 1

+– 20 k� 45 k�

12 V
2.4 �

i 2

+– 8 k� 2 k�

12 V

i 3

+– 9 k� 9 k�9 k�

Figure P 3.6-46

P 3.6-47 Determine the values of the voltages v1 and v2 and of

the current i3 in the circuit shown in Figure P 3.6-47.

4 �
40 �

50 V

+
– 30i a

80 �

80 � 20 �
i 3

+

–
v1

i a
80 �

+

–
v2

+ –

Figure P 3.6-47

Section 3.7 Analyzing Resistive Circuits Using

MATLAB

P 3.7-1 Determine the power supplied by each of the

sources, independent and dependent, in the circuit shown in

Figure P 3.7-1.

Hint: Use the guidelines given in Section 3.7 to label the circuit

diagram. Use MATLAB to solve the equations representing the

circuit.
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5 V 8 �
2 �

4 �10 �
+

–
v1

2.5 A 1.5 v1

Figure P 3.7-1

P 3.7-2 Determine the power supplied by each of the sources,

independent and dependent, in the circuit shown in Figure

P 3.7-2.

Hint: Use the guidelines given in Section 3.7 to label the circuit

diagram. Use MATLAB to solve the equations representing the

circuit. i1

5i1

15 V

a
+ –

+

+

–

–
4 �

8 �
8 �

4 �

6 V 4 �

Figure P 3.7-2

P 3.7-3 Determine the power supplied by each of the inde-

pendent sources in the circuit shown in Figure P 3.7-3.

+–6 � 2 A
8 �

4 � 12 V
12 �

Figure P 3.7-3

P 3.7-4 Determine the power supplied by each of the sources

in the circuit shown in Figure P 3.7-4.

30 Ω

40 Ω2.4 A 12 v c

40 Ω

50 Ω

+

–
v c

+–

Figure P 3.7-4

Section 3.8 How CanWe Check . . . ?

P 3.8-1 A computer analysis program, used for the circuit

of Figure P 3.8-1, provides the following branch currents and

voltages: i1¼"0.833 A, i2¼"0.333 A, i3¼ "1.167 A, and

v¼"2.0 V. Are these answers correct?

Hint: Verify that KCL is satisfied at the center node and

that KVL is satisfied around the outside loop consisting of the

two 6-V resistors and the voltage source.

i1

2i2
i2

i3
12 V

+
–

+ –

6 �

6 �
4 �

3 � v

Figure P 3.8-1

P 3.8-2 The circuit of Figure P 3.8-2 was assigned as a

homework problem. The answer in the back of the textbook

says the current i is 1.25 A. Verify this answer, using current

division.

i
5 A

5 �

5 �20 �20 �

Figure P 3.8-2

P 3.8-3 The circuit of Figure P 3.8-3 was built in the lab, and

vo was measured to be 6.25 V. Verify this measurement, using

the voltage divider principle.

vo24 V

650 �

320 �

230 �

+

–

+
–

Figure P 3.8-3

P 3.8-4 The circuit of Figure P 3.8-4 represents an auto’s

electrical system. A report states that iH¼ 9 A, iB¼"9 A, and

iA¼ 19.1 A. Verify that this result is correct.

Hint: Verify that KCL is satisfied at each node and that KVL is

satisfied around each loop.

iB
iA

iH

Alternator

Battery

12 V

14 V

Headlights

+ –

+ –

1.2 �

0.1 �

0.05 �

Figure P 3.8-4 Electric circuit model of an automobile’s

electrical system.

P 3.8-5 Computer analysis of the circuit in Figure P 3.8-5

shows that ia¼"0.5 mA, and ib¼"2 mA. Was the computer

analysis done correctly?
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Hint: Verify that the KVL equations for all three meshes are

satisfied when ia¼"0.5 mA, and ib¼"2 mA.

4ia

ia

ib
12 VA110 V

+

+

–

–

+
–

4 Ω

2 Ω

2

Figure P 3.8-5

P 3.8-6 Computer analysis of the circuit in Figure P 3.8-6

shows that ia¼ 0.5 mA and ib¼ 4.5 mA. Was the computer

analysis done correctly?

Hint: First, verify that the KCL equations for all five nodes

are satisfied when ia ¼ 0.5 mA, and ib ¼ 4.5 mA. Next, verify

that the KVL equation for the lower left mesh (a-e-d-a) is

satisfied. (The KVL equations for the other meshes aren’t

useful because each involves an unknown voltage.)

1 mA 2 mA

e
c

d

b

a

4 mA

ia

ib
5 �

2 �

4 �
3 �

3 �

Figure P 3.8-6

P 3.8-7 Verify that the element currents and voltages shown

in Figure P 3.8-7 satisfy Kirchhoff’s laws:

(a) Verify that the given currents satisfy the KCL equations

corresponding to nodes a, b, and c.

(b) Verify that the given voltages satisfy the KVL equations

corresponding to loops a-b-d-c-a and a-b-c-d-a.

+

+

+

–

+

+

+

–

–

––

a c
b

d

3 V

2 V
–3 A

–2 A

–6 V

4 A

7 A –5 A–8 V

–

1 V

5 V
2 A

Figure P 3.8-7

*P 3.8-8 Figure P 3.8-8 shows a circuit and some correspond-

ing data. The tabulated data provide values of the current

i and voltage v corresponding to several values of the

resistance R2.

(a) Use the data in rows 1 and 2 of the table to find the values of

vs and R1.

(b) Use the results of part (a) to verify that the tabulated data

are consistent.

(c) Fill in the missing entries in the table.

R1

R2

R2, Ω

vs

+

–
v+

–

i

i, A

(a)

(b)

30

40

20

10

0

?

0.48

0.8

1.2

2.4

v, V

18

?

16

12

0

Figure P 3.8-8

*P 3.8-9 Figure P 3.8-9 shows a circuit and some correspond-

ing data. The tabulated data provide values of the current i

and voltage v corresponding to several values of the

resistance R2.

(a) Use the data in rows 1 and 2 of the table to find the values of

is and R1.

(b) Use the results of part (a) to verify that the tabulated data

are consistent.

(c) Fill in the missing entries in the table.

R1 R2

R2, Ω

is

+

–
v

i i, A

(a) (b)

80

40

20

10

?

1/2

6/7

4/3

v, V

?

20

120/7

40/3

Figure P 3.8-9
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Design Problems

DP 3-1 The circuit shown in Figure DP 3-1 uses a potenti-

ometer to produce a variable voltage. The voltage vm varies as a

knob connected to the wiper of the potentiometer is turned.

Specify the resistances R1 and R2 so that the following three

requirements are satisfied:

1. The voltage vm varies from 8 V to 12 V as the wiper moves

from one end of the potentiometer to the other end of the

potentiometer.

2. The voltage source supplies less than 0.5 W of power.

3. Each of R1, R2, and RP dissipates less than 0.25 W.

R1

R2

RP24 V

Voltmeter

+
–

vm

+

–

Figure DP 3-1

DP 3-2 The resistance RL in Figure DP 3-2 is the equivalent

resistance of a pressure transducer. This resistance is specified

to be 200 V 0 5 percent. That is, 190 V , RL , 210 V.

The voltage source is a 12 V 0 1 percent source capable of

supplying 5 W. Design this circuit, using 5 percent, 1=8-watt

resistors for R1 and R2, so that the voltage across RL is

vo ¼ 4 V0 10%

(A 5 percent, 1/8-watt 100-V resistor has a resistance between

95 and 105 V and can safely dissipate 1/8-W continuously.)

12 V

+

–

+
– R1 RL

R2

vo

Figure DP 3-2

DP 3-3 A phonograph pickup, stereo amplifier, and speaker

are shown in Figure DP 3-3a and redrawn as a circuit model as

shown in Figure DP 3-3b. Determine the resistance R so that the

voltage v across the speaker is 16 V. Determine the power

delivered to the speaker.

Phonograph Amplifier
Speaker

(a)

vab v

–

+R

120vab

+

–

200 mV +
–

+

–

a

b

Speaker

(b)

Amplifier

1 M� 10 �

Pickup

500 �

Figure DP 3-3 A phonograph stereo system.

DP 3-4 A Christmas tree light set is required that will operate

from a 6-V battery on a tree in a city park. The heavy-duty

battery can provide 9 A for the four-hour period of operation

each night. Design a parallel set of lights (select the maximum

number of lights) when the resistance of each bulb is 12 V.

DP 3-5 The input to the circuit shown in Figure DP 3-5 is

the voltage source voltage vs. The output is the voltage vo. The

output is related to the input by

vo ¼
R2

R1 þ R2

vs ¼ gvs

The output of the voltage divider is proportional to the input.

The constant of proportionality, g, is called the gain of the

voltage divider and is given by

g ¼
R2

R1 þ R2

The power supplied by the voltage source is

p ¼ vsis ¼ vs
vs

R1 þ R2

! "

¼
vs

2

R1 þ R2

¼
vs

2

Rin

where

Rin ¼ R1 þ R2

is called the input resistance of the voltage divider.

(a) Design a voltage divider to have a gain, g¼ 0.65.

(b) Design a voltage divider to have a gain, g¼ 0.65, and an

input resistance, Rin¼ 2500 V.

R2

R1

vs vo

i

+
–

+

–

Figure DP 3-5

DP 3-6 The input to the circuit shown in Figure DP 3-6 is the

current source current is. The output is the current io. The

output is related to the input by

io ¼
R1

R1 þ R2

is ¼ gis
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The output of the current divider is proportional to the input.

The constant of proportionality g is called the gain of the

current divider and is given by

g ¼
R1

R1 þ R2

The power supplied by the current source is

p ¼ vsis ¼ is
R1R2

R1 þ R2

! "- .

is ¼
R1R2

R1 þ R2

is
2 ¼ Rinis

2

where

Rin ¼
R1R2

R1 þ R2

is called the input resistance of the current divider.

(a) Design a current divider to have a gain, g¼ 0.65.

(b) Design a current divider to have a gain, g¼ 0.65, and an

input resistance, Rin¼ 10000 V.

R2R1vsis

io

+

–

Figure DP 3-6

DP 3-7 Design the circuit shown in Figure DP 3-7 to have an

output vo¼ 8.5 V when the input is vs¼ 12 V. The circuit

should require no more than 1 mW from the voltage source.

R2

R1

vs vo

i

+
–

+

–

Figure DP 3-7

DP 3-8 Design the circuit shown in Figure DP 3-8 to have an

output io¼ 1.8 mA when the input is is¼ 5 mA. The circuit should

require no more than 1 mW from the current source.

R1 R2vsis

io

+

–

Figure DP 3-8

DP 3-9 A thermistor is a temperature dependent resistor. The

thermistor resistance RT is related to the temperature by the

equation

RT ¼ RT e b 1=T"1=Toð Þ

where T has units of (K and R is in Ohms. R0 is resistance at

temperature T0 and the parameter b is in (K. For example,

suppose that a particular thermistor has a resistance R0 = 620 V

at the temperature T0 = 20 (C = 293 (K and b= 3330 (K. At

T = 70 (C = 343 (K the resistance of this thermistor will be

RT ¼ 620e 3330 1=342"1=293ð Þ ¼ 121:68 V

In Figure DP 3-9 this particular thermistor in used in a voltage

divider circuit. Specify the value of the resistor R that will cause

the voltage vT across the thermistor to be 4 V when the

temperature is 100 (C.

+– 40 V
R

Thermistor

R T v T

+

–

Figure DP 3-9

DP 3-10 The circuit shown in Figure DP 3-10 contains a

thermistor that has a resistance R0 = 620 V at the temperature

T0 = 20 (C = 293 (K and b= 3330 (K. (See problem DP 3-9.)

Design this circuit (that is, specify the values of R and Vs) so

that the thermistor voltage is vT = 4 V when T = 100 (C and

vT = 20 V when T = 0 (C.

+– Vs
R

Thermistor

R T v T

+

–

Figure DP 3-10

DP 3-11 The circuit shown in Figure DP 3-11 is designed to

help orange growers protect their crops against frost by sounding

an alarm when the temperature falls below freezing. It contains a

thermistor that has a resistance R0 = 620 V at the temperature

T0 = 20 (C = 293 (K and b= 3330 (K. (See problem DP 3-9.)

The alarm will sound when the voltage at the " input of

the comparator is less than the voltage at the + input. Using

voltage division twice, we see that the alarm sounds whenever

R 2

RT þ R 2

<
R 4

R 3 þ R 4

Determine values of R2, R3, and R4 that cause the alarm to

sound whenever the temperature is below freezing.

–
+

12 V

R3

R4R2

RT
Thermistor

12 V

Comparator

Buzzer

Figure DP 3-11
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4.13 Summary
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Design Problems

4.1 I n t r o d u c t i o n

To analyze an electric circuit, we write and solve a set of equations. We apply Kirchhoff’s current and

voltage laws to get some of the equations. The constitutive equations of the circuit elements, such as

Ohm’s law, provide the remaining equations. The unknown variables are element currents and voltages.

Solving the equations provides the values of the element current and voltages.

This method works well for small circuits, but the set of equations can get quite large for even

moderate-sized circuits. A circuit with only 6 elements has 6 element currents and 6 element voltages.

We could have 12 equations in 12 unknowns. In this chapter, we consider two methods for writing a

smaller set of simultaneous equations:

! The node voltage method.

! The mesh current method.

The node voltage method uses a new type of variable called the node voltage. The “node voltage

equations” or, more simply, the “node equations,” are a set of simultaneous equations that represent a

given electric circuit. The unknown variables of the node voltage equations are the node voltages. After

solving the node voltage equations, we determine the values of the element currents and voltages from

the values of the node voltages.

It’s easier to write node voltage equations for some types of circuit than for others. Starting with

the easiest case, we will learn how to write node voltage equations for circuits that consist of:

! Resistors and independent current sources.

! Resistors and independent current and voltage sources.

! Resistors and independent and dependent voltage and current sources.

The mesh current method uses a new type of variable called the mesh current. The “mesh current

equations” or, more simply, the “mesh equations,” are a set of simultaneous equations that represent a
114



given electric circuit. The unknown variables of the mesh current equations are the mesh currents. After

solving the mesh current equations, we determine the values of the element currents and voltages from

the values of the mesh currents.

It’s easier to write mesh current equations for some types of circuit than for others. Starting with

the easiest case, we will learn how to write mesh current equations for circuits that consist of:

! Resistors and independent voltage sources.

! Resistors and independent current and voltage sources.

! Resistors and independent and dependent voltage and current sources.

4.2 No d e V o l t a g e A n a l y s i s o f C i r c u i t s
w i t h C u r r e n t S o u r c e s

Consider the circuit shown in Figure 4.2-1a. This circuit contains four elements: three resistors and a

current source. The nodes of a circuit are the places where the elements are connected together. The

circuit shown in Figure 4.2-1a has three nodes. It is customary to draw the elements horizontally or

vertically and to connect these elements by horizontal and vertical lines that represent wires. In other

words, nodes are drawn as points or are drawn using horizontal or vertical lines. Figure 4.2-1b shows

the same circuit, redrawn so that all three nodes are drawn as points rather than lines. In Figure 4.2-1b,

the nodes are labeled as node a, node b, and node c.

Analyzing a connected circuit containing n. nodes will require n " 1 KCL equations. One way to

obtain these equations is to apply KCL at each node of the circuit except for one. The node at which

KCL is not applied is called the reference node. Any node of the circuit can be selected to be the

reference node. We will often choose the node at the bottom of the circuit to be the reference node.

(When the circuit contains a grounded power supply, the ground node of the power supply is usually

selected as the reference node.) In Figure 4.2-1b, node c is selected as the reference node and marked

with the symbol used to identify the reference node.

The voltage at any node of the circuit, relative to the reference node, is called a node voltage. In

Figure 4.2-1b, there are two node voltages: the voltage at node a with respect to the reference node, node

c, and the voltage at node b, again with respect to the reference node, node c. In Figure 4.2-1c,

voltmeters are added to measure the node voltages. To measure node voltage at node a, connect the red

(a)

(b)

R1R1

R2R2 R3
is

is

R3

va –+ vb –+

Voltmeter Voltmeter

a
b

c

(c)

R1

R2

is

R3

a
b

c

FIGURE 4.2-1 (a) A circuit with three

nodes. (b) The circuit after the nodes

have been labeled and a reference node

has been selected and marked.

(c) Using voltmeters to measure the

node voltages.

Node Voltage Analysis of Circuits with Current Sources 115



probe of the voltmeter at node a and connect the black probe at the reference node, node c. To measure

node voltage at node b, connect the red probe of the voltmeter at node b and connect the black probe at

the reference node, node c.

The node voltages in Figure 4.2-1c can be represented as vac and vbc, but it is conventional to drop

the subscript c and refer to these as va and vb. Notice that the node voltage at the reference node is

vcc ¼ vc ¼ 0 V because a voltmeter measuring the node voltage at the reference node would have both

probes connected to the same point.

One of the standardmethods for analyzing an electric circuit is to write and solve a set of simultaneous

equations called the node equations. The unknown variables in the node equations are the node voltages of

the circuit. We determine the values of the node voltages by solving the node equations.

To write a set of node equations, we do two things:

1. Express element currents as functions of the node voltages.

2. Apply Kirchhoff’s current law (KCL) at each of the nodes of the circuit except for the

reference node.

Consider the problem of expressing element currents as functions of the node voltages. Although our

goal is to express element currents as functions of the node voltages, we begin by expressing element

voltages as functions of the node voltages. Figure 4.2-2 shows how this is done. The voltmeters in

Figure 4.2-2 measure the node voltages v1 and v2 at the nodes of the circuit element. The element voltage

has been labeled as va. Applying Kirchhoff’s voltage law to the loop shown in Figure 4.2-2 gives

va ¼ v1 " v2

This equation expresses the element voltage va as a function of the node voltages v1 and v2. (There is

an easy way to remember this equation. Notice the reference polarity of the element voltage va. The

element voltage is equal to the node voltage at the node near theþ of the reference polarity minus the

node voltage at the node near the" of the reference polarity.)

Now consider Figure 4.2-3. In Figure 4.2-3a, we use what we have learned to express the voltage

of a circuit element as a function of node voltages. The circuit element in Figure 4.2-3a could be

anything: a resistor, a current source, a dependent voltage source, and so on. In Figures 4.2-3b and c,

we consider specific types of circuit element. In Figure 4.2-3b, the circuit element is a voltage source.

The element voltage has been represented twice, once as the voltage source voltage Vs and once as a

function of the node voltages v1 " v2. Noticing that the reference polarities for Vs and v1 " v2 are the

same (both þ on the left), we write

V s ¼ v1 " v2

This is an important result. Whenever we have a voltage source connected between two nodes of a

circuit, we can express the voltage source voltage Vs as a function of the node voltages v1 and v2.

Voltmeter

v1

va

v2

+

+

–

–

v1

+

–

Voltmeter

v2

FIGURE 4.2-2 Node voltages v1 and v2 and element voltage va of a circuit element.
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Frequently, we know the value of the voltage source voltage. For example, suppose that

V s ¼ 12 V. Then

12 ¼ v1 " v2

This equation relates the values of two of the node voltages.

Next, consider Figure 4.2-3c. In Figure 4.2-3c, the circuit element is a resistor.We will use Ohm’s

law to express the resistor current i as a function of the node voltages. First, we express the resistor

voltage as a function of the node voltages v1 " v2. Noticing that the resistor voltage v1 " v2 and the

current i adhere to the passive convention, we use Ohm’s law to write

i ¼
v1 " v2

R

Frequently, we know the value of the resistance. For example, when R ¼ 8V, this equation becomes

i ¼
v1 " v2

8

This equation expresses the resistor current i as a function of the node voltages v1 and v2.

Next, let’s write node equations to represent the circuit shown in Figure 4.2-4a. The input to this circuit

is the current source current is. To write node equations, we will first express the resistor currents as functions

of the node voltages and then apply Kirchhoff’s current law at nodes a and b. The resistor voltages are

expressed as functions of the node voltages in Figure 4.2-4b, and then the resistor currents are expressed as

functions of the node voltages in Figure 4.2-4c.

–+ v1 – v2 v1 – v2 v1 – v2

v1 – v2

v1 v2 v1

Vs v2 v1 v2

(a)

–+

(b)

–+

R

R

i =

(c)

+ –

FIGURE 4.2-3 Node voltages v1

and v2 and element voltage v1 " v2

of a (a) generic circuit element, (b)

voltage source, and (c) resistor.

(a)

R1

R3R2
vb

v1

–

–
+

va

–

+
+

is

a b

(b)

R1

R3R2
vb

(va – vb)

–

–
+

va

–

+
+

(va – vb) –+

is

a b

(c)

R1
R1

R3R2
vb

va – vb

–

+

va

–

+

is

a b

R2

va

R3

vb

FIGURE 4.2-4

(a) A circuit with three

resistors. (b) The

resistor voltages

expressed as functions

of the node voltages.

(c) The resistor currents

expressed as functions

of the node voltages.
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The node equations representing the circuit in Figure 4.2-4 are obtained by applying Kirchhoff’s

current law at nodes a and b. Using KCL at node a gives

is ¼
va

R2

þ
va " vb

R1

ð4:2-1Þ

Similarly, the KCL equation at node b is

va " vb

R1

¼
vb

R3

ð4:2-2Þ

If R1 ¼ 1V; R2 ¼ R3 ¼ 0:5V, and is ¼ 4 A, and Eqs. 4.2-1 and 4.2-2 may be rewritten as

4 ¼
va " vb

1
þ

va

0:5
ð4:2-3Þ

va " vb

1
¼

vb

0:5
ð4:2-4Þ

Solving Eq. 4.2-4 for vb gives

vb ¼
va

3
ð4:2-5Þ

Substituting Eq. 4.2-5 into Eq. 4.2-3 gives

4 ¼ va "
va

3
þ 2va ¼

8

3
va ð4:2-6Þ

Solving Eq. 4.2-6 for va gives
va ¼

3

2
V

Finally, Eq. 4.2-5 gives

vb ¼
1

2
V

Thus, the node voltages of this circuit are

va ¼
3

2
V and vb ¼

1

2
V

E X A M P L E 4 . 2 - 1 Node Equations

Determine the value of the resistance R in the circuit shown in Figure 4.2-5a.

Solution
Let va denote the node voltage at node a and vb denote the node voltage at node b. The voltmeter in Figure 4.2-5

measures the value of the node voltage at node b, vb. In Figure 4.2-5b, the resistor currents are expressed as

functions of the node voltages. Apply KCL at node a to obtain

4þ
va

10
þ

va " vb

5
¼ 0

Using vb ¼ 5 V gives

4þ
va

10
þ

va " 5

5
¼ 0

Solving for va, we get

va ¼ "10 V

Try it 

yourself 

in WileyPLUS
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Next, apply KCL at node b to obtain

"
va " vb

5

! "

þ
vb

R
" 4 ¼ 0

Using va ¼ "10 V and vb ¼ 5 V gives

"
"10" 5

5

# $

þ
5

R
" 4 ¼ 0

Finally, solving for R gives
R ¼ 5V

E X A M P L E 4 . 2 - 2 Node Equations

Obtain the node equations for the circuit in Figure 4.2-6.

Solution
Let va denote the node voltage at node a, vb denote

the node voltage at node b, and vc denote the node

voltage at node c. Apply KCL at node a to obtain

"
va " vc

R1

# $

þ i1 "
va " vc

R2

# $

þ i2 "
va " vb

R5

# $

¼ 0

Separate the terms of this equation that involve va
from the terms that involve vb and the terms that

involve vc to obtain.

1

R1

þ
1

R2

þ
1

R5

# $

va "
1

R5

# $

vb "
1

R1

þ
1

R2

# $

vc ¼ i1 þ i2

There is a pattern in the node equations of circuits that contain only resistors and current sources. In the node equation

at node a, the coefficient of va is the sum of the reciprocals of the resistances of all resistors connected to node a.

Thecoefficient of vb isminus the sumof the reciprocals of the resistancesof all resistors connectedbetweennodeband

nodea.Thecoefficientvc isminus thesumof the reciprocalsof the resistancesofall resistorsconnectedbetweennodec

and node a. The right-hand side of this equation is the algebraic sum of current source currents directed into node a.

R2
R4

R3

R6

R5

i2

i3

a

c

b

R1 i1

FIGURE 4.2-6 The circuit for Example 4.2-2.

5 Ω 5 Ω

10 Ω 10 Ω4 A 4 A 4 A 4 A

(a)

Voltmeter

a b

(b)

a b

R R
10

5

R

vbva

va – vb

5 . 0 0

FIGURE 4.2-5 (a) The

circuit for Example 4.2-1.

(b) The circuit after the

resistor currents are

expressed as functions of

the node voltages.
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Apply KCL at node b to obtain

"i2 þ
va " vb

R5

# $

"
vb " vc

R3

# $

"
vb

R4

# $

þ i3 ¼ 0

Separate the terms of this equation that involve va from the terms that involve vb and the terms that involve vc to obtain

"
1

R5

# $

va þ
1

R3

þ
1

R4

þ
1

R5

# $

vb "
1

R3

# $

vc ¼ i3 " i2

As expected, this node equation adheres to the pattern for node equations of circuits that contain only resistors and

current sources. In the node equation at node b, the coefficient of vb is the sum of the reciprocals of the resistances of

all resistors connected to node b. The coefficient of va is minus the sum of the reciprocals of the resistances of all

resistors connected between node a and node b. The coefficient of vc is minus the sum of the reciprocals of the

resistances of all resistors connected between node c and node b. The right-hand side of this equation is the

algebraic sum of current source currents directed into node b.

Finally, use the pattern for the node equations of circuits that contain only resistors and current sources to

obtain the node equation at node c:

"
1

R1

þ
1

R2

# $

va "
1

R3

# $

vb þ
1

R1

þ
1

R2

þ
1

R3

þ
1

R6

# $

vc ¼ " i1

E X A M P L E 4 . 2 - 3 Node Equations

Determine the node voltages for the circuit in Figure 4.2-6 when i1 ¼ 1 A; i2 ¼ 2 A; i3 ¼ 3 A; R1 ¼ 5V;
R2 ¼ 2V , R3 ¼ 10V; R4 ¼ 4V; R5 ¼ 5V, and R6 ¼ 2V.

Solution
The node equations are

1

5
þ
1

2
þ
1

5

# $

va "
1

5

# $

vb "
1

5
þ
1

2

# $

vc ¼ 1þ 2

"
1

5

# $

va þ
1

10
þ
1

5
þ
1

4

# $

vb "
1

10

# $

vc ¼"2þ 3

"
1

5
þ
1

2

# $

va "
1

10

# $

vb þ
1

5
þ
1

2
þ

1

10
þ
1

2

# $

vc ¼"1

0:9va " 0:2vb " 0:7vc ¼ 3

"0:2va þ 0:55vb " 0:1vc ¼ 1

"0:7va " 0:1vb þ 1:3vc ¼ "1

The node equations can be written using matrices as

A v ¼ b
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EXERCISE 4.2-1 Determine the node voltages va and vb for the circuit of Figure E 4.2-1.

Answer: va ¼ 3 V and vb ¼ 11 V

EXERCISE 4.2-2 Determine the node voltages va and vb for the circuit of Figure E 4.2-2.

Answer: va ¼ "4=3 V and vb ¼ 4 V

4.3 No d e V o l t a g e A n a l y s i s o f C i r c u i t s w i t h C u r r e n t a n d
V o l t a g e S o u r c e s

In the preceding section, we determined the node voltages of circuits with independent current sources

only. In this section, we consider circuits with both independent current and voltage sources.

First we consider the circuit with a voltage source between ground and one of the other nodes.

Because we are free to select the reference node, this particular arrangement is easily achieved.

2 �

3 � 1 A

3 A

a b

FIGURE E 4.2-1

2 Ω

3 Ω4 Ω 3 A 4 A

a b

FIGURE E 4.2-2

where

A ¼
0:9 "0:2 "0:7

"0:2 0:55 "0:1
"0:7 0:1 1:3

2

4

3

5; b ¼
3

1

"1

2

4

3

5 and; v ¼
va

vb

vc

2

4

3

5

This matrix equation is solved using MATLAB in Figure 4.2-7.

v ¼

va

vb

vc

2

4

3

5 ¼

7:1579

5:0526

3:4737

2

4

3

5

Consequently, va ¼ 7:1579 V; vb ¼ 5:0526 V, and vc ¼ 3:4737 V

FIGURE 4.2-7 Using MATLAB to solve the

node equation in Example 4.2-3.

Try it 

yourself 

in WileyPLUS

Try it 

yourself 

in WileyPLUS
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Such a circuit is shown in Figure 4.3-1. We immediately note that the source is connected between

terminal a and ground and, therefore,

va ¼ vs

Thus, va is known and only vb is unknown. We write the KCL equation at node b to obtain

is ¼
vb

R3

þ
vb " va

R2

However, va ¼ vs. Therefore,

is ¼
vb

R3

þ
vb " vs

R2

Then, solving for the unknown node voltage vb, we get

vb ¼
R2R3is þ R3vs

R2 þ R3

Next, let us consider the circuit of Figure 4.3-2, which includes a voltage source between two nodes.

Because the source voltage is known, use KVL to obtain

va " vb ¼ vs
or va " vs ¼ vb

To account for the fact that the source voltage is known, we consider both node a and node b as

part of one larger node represented by the shaded ellipse shown in Figure 4.3-2. We require a larger

node because va and vb are dependent. This larger node is often called a supernode or a generalized

node. KCL says that the algebraic sum of the currents entering a supernode is zero. That means that we

apply KCL to a supernode in the same way that we apply KCL to a node.

A supernode consists of two nodes connected by an independent or a dependent voltage source.

We then can write the KCL equation at the supernode as

va

R1

þ
vb

R2

¼ is

However, because va ¼ vs þ vb, we have

vs þ vb

R1

þ
vb

R2

¼ is

Then, solving for the unknown node voltage vb, we get

vb ¼
R1R2is " R2vs

R1 þ R2

a b
R2

R1 R3 isvs
+–

FIGURE 4.3-1 Circuit with an independent

voltage source and an independent current source.

va vb

vs

R1 R2 is

+ –

Supernode

FIGURE 4.3-2 Circuit with a supernode

that incorporates va and vb.
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E X A M P L E 4 . 3 - 1 Node Equations

Determine the values node voltages, v1 and v2, in the circuit shown in Figure 4.3-3a.

100 mA50 Ω
+–60 V

v2
v1

80 Ω

75 Ω

65 Ω

100 mA50 Ω +–60 V

v2
v1

80 Ω

75 Ω

65 Ω

v1
50

v1 − v2
65

v2 − 60 
75

v1 − 60 
80

(a ) (b )

60 V

FIGURE 4.3-3 The circuit considered in Example 4.3-1.

Solution
First, represent the resistor currents in terms of the node voltages as shown in Figure 4.3-3b.

Apply at KCL at node 1 to get

v1

50
þ

v1 " v2

65
þ

v1 " 60

80
¼ 0 )

1

50
þ

1

65
þ

1

80

# $

v1 "
1

65

# $

v2 ¼
60

80

Apply KCL at node 2 to get

0:1 ¼
v2 " v1

65
þ

v2 " 60

75
¼ ) "

1

65

# $

v1 þ
1

65
þ

1

75

# $

v2 ¼ 0:1

Organize these equations in matrix form to write

1

50
þ

1

65
þ

1

80
"

1

65

"
1

65

1

65
þ

1

75

2

6

4

3

7

5

v1

v2

+ ,

¼

60

80
0:1

2

4

3

5

Solving, we get v1 ¼ 30:081Vandv2 ¼ 47:990V

E X A M P L E 4 . 3 - 2 Supernodes

Determine the values of the node voltages va and vb for the

circuit shown in Figure 4.3-4.

Solution
We can write the first node equation by considering the voltage

source. The voltage source voltage is related to the node voltages by

vb " va ¼ 12 ) vb ¼ va þ 12

To write the second node equation, we must decide what to do about the voltage source current. (Notice that there is

no easy way to express the voltage source current in terms of the node voltages.) In this example, we illustrate two

methods of writing the second node equation.

va

+

–

+–

6 Ω 3 Ωvb

+

–

1.5 A 3.5 A

12 Va b

FIGURE 4.3-4 The circuit for Example 4.3-2.

Try it 

yourself 

in WileyPLUS

Try it 

yourself 

in WileyPLUS

Node Voltage Analysis of Circuits with Current and Voltage Sources 123



Method 1: Assign a name to the voltage source current. Apply KCL at both of the voltage source nodes.

Eliminate the voltage source current from the KCL equations.

Figure 4.3-5 shows the circuit after labeling the voltage source current. The KCL equation at node a is

1:5þ i ¼
va

6

The KCL equation at node b is i þ 3:5þ
vb

3
¼ 0

Combining these two equations gives

1:5" 3:5þ
vb

3

! "

¼
va

6
) "2:0 ¼

va

6
þ

vb

3

Method 2: Apply KCL to the supernode corresponding to the voltage source. Shown in Figure 4.3-6, this

supernode separates the voltage source and its nodes from the rest of the circuit. (In this small circuit, the rest of the

circuit is just the reference node.)

Apply KCL to the supernode to get

1:5 ¼
va

6
þ 3:5þ

vb

3
) "2:0 ¼

va

6
þ

vb

3

This is the same equation that was obtained using method 1. Applying KCL to the supernode is a shortcut for

doings three things:

1. Labeling the voltage source current as i.

2. Applying KCL at both nodes of the voltage source.

3. Eliminating i from the KCL equations.

In summary, the node equations are

vb " va ¼ 12

and
va

6
þ

vb

3
¼ "2:0

Solving the node equations gives

va ¼ "12 V; and vb ¼ 0 V

(We might be surprised that vb is 0 V, but it is easy to check that these values are correct by substituting them

into the node equations.)

va

+

–

+–

6 Ω 3 Ωvb

+

–

1.5 A 3.5 A

12 V
a b

i

FIGURE 4.3-5 Method 1 For Example 4.3-2.

va

+

–

+–

6 Ω 3 Ωvb

+

–

1.5  A 3.5  A

12  V
a b

FIGURE 4.3-6 Method 2 for Example 4.3-2.

124 4. Methods of Analysis of Resistive Circuits



EXERCISE 4.3-1 Find the node voltages for the circuit of Figure E 4.3-1.

Hint: Write a KCL equation for the supernode corresponding to the 10-V voltage source.

Answer: 2þ
vb þ 10

20
þ

vb

30
¼ 5 ) vb ¼ 30 V and va ¼ 40 V

EXERCISE 4.3-2 Find the voltages va and vb for the circuit of Figure E 4.3-2.

Answer:
vb þ 8ð Þ " "12ð Þ

10
þ

vb

40
¼ 3 ) vb ¼ 8 V and va ¼ 16 V
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E X A M P L E 4 . 3 - 3 Node Equations for a Circuit Containing

Voltage Sources

Determine the node voltages for the circuit shown in Figure 4.3-7.

Solution
We will calculate the node voltages of this circuit by writing a KCL

equation for the supernode corresponding to the 10-V voltage source.

First notice that

vb ¼ "12 V

and that

va ¼ vc þ 10

Writing a KCL equation for the supernode, we have

va " vb

10
þ 2þ

vc " vb

40
¼ 5

or

4 va þ vc " 5 vb ¼ 120

Using va ¼ vc þ 10 and vb ¼ "12 to eliminate va and vb, we have

4 vc þ 10ð Þ þ vc " 5 "12ð Þ ¼ 120

Solving this equation for vc, we get
vc ¼ 4 V

2 A12 V5 A

40 Ω

10 V

10 Ω 

+–

+ –

a
b

c

FIGURE 4.3-7 The circuit for Example 4.3-3.

20 Ω 30 Ω2 A 5 A

10 V
a b+ –

FIGURE E 4.3-1

10 Ω

40 Ω12 V 3 A

8 V
a b+ –

+–

FIGURE E 4.3-2

Try it 

yourself 

in WileyPLUS

Try it 

yourself 

in WileyPLUS

Try it 

yourself 

in WileyPLUS



4.4 No d e V o l t a g e A n a l y s i s w i t h D e p e n d e n t S o u r c e s

When a circuit contains a dependent source the controlling current or voltage of that

dependent source must be expressed as a function of the node voltages.

It is then a simple matter to express the controlled current or voltage as a function of the node

voltages. The node equations are then obtained using the techniques described in the previous two

sections.

E X A M P L E 4 . 4 - 1 Node Equations for a Circuit Containing

a Dependent Source

Determine the node voltages for the circuit shown in Figure 4.4-1.

Solution
The controlling current of the dependent source is ix. Our first task

is to express this current as a function of the node voltages:

ix ¼
va " vb

6

The value of the node voltage at node a is set by the 8-V voltage

source to be

va ¼ 8 V

So ix ¼
8" vb

6

The node voltage at node c is equal to the voltage of the dependent source, so

vc ¼ 3ix ¼ 3
8" vb

6

# $

¼ 4"
vb

2
ð4:4-1Þ

Next, apply KCL at node b to get

8" vb

6
þ 2 ¼

vb " vc

3
ð4:4-2Þ

Using Eq. 4.4-1 to eliminate vc from Eq. 4.4-2 gives

8" vb

6
þ 2 ¼

vb " 4"
vb

2

! "

3
¼

vb

2
"
4

3

Solving for vb gives

vb ¼ 7 V

Then, vc ¼ 4"
vb

2
¼

1

2
V

6 Ω 3 Ω

8 V 2 A

ba c

+–
+
–

ix

3ix

FIGURE 4.4-1 A circuit with a CCVS.

Try it 

yourself 

in WileyPLUS
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E X A M P L E 4 . 4 - 2 Node Equations for a Circuit

Containing a Dependent Source

Determine the node voltages for the circuit shown in Figure 4.4-2.

Solution
The controlling voltage of the dependent source is vx. Our first task

is to express this voltage as a function of the node voltages:

vx ¼ "va

The difference between the node voltages at nodes a and b is set

by voltage of the dependent source:

va " vb ¼ 4 vx ¼ 4 "vað Þ ¼ "4 va

Simplifying this equation gives
vb ¼ 5 va ð4:4-3Þ

Applying KCL to the supernode corresponding to the dependent voltage source gives

3 ¼
va

4
þ

vb

10
ð4:4-4Þ

Using Eq. 4.4-3 to eliminate vb from Eq. 4.4-4 gives

3 ¼
va

4
þ
5va

10
¼

3

4
va

Solving for va, we get
va ¼ 4 V

Finally, vb ¼ 5 va ¼ 20 V

4 Ω 10 Ω3 A

ba

4vx

+ –

vx

+

–

FIGURE 4.4-2 A circuit with a VCVS.

E X A M P L E 4 . 4 - 3 Node Equations for a Circuit

Containing a Dependent Source

Determine the node voltages corresponding to nodes a and b for the circuit

shown in Figure 4.4-3.

Solution
The controlling current of the dependent source is ia. Our first task is to express

this current as a function of the node voltages. Apply KCL at node a to get

6" va

10
¼ ia þ

va " vb

20

Node a is connected to the reference node by a short circuit, so va ¼ 0 V.

Substituting this value of va into the preceding equation and simplifying gives

ia ¼
12þ vb

20
ð4:4-5Þ

Next, apply KCL at node b to get
0" vb

20
¼ 5 ia ð4:4-6Þ

Using Eq. 4.4-5 to eliminate ia from Eq. 4.4-6 gives

0" vb

20
¼ 5

12þ vb

20

# $

Solving for vb gives vb ¼ "10 V

10 Ω 20 Ω

6 V

ba

+–
ia 5ia

FIGURE 4.4-3 A circuit with a CCCS.

Try it 

yourself 

in WileyPLUS

Try it 

yourself 

in WileyPLUS
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EXERCISE 4.4-1 Find the node voltage vb for the circuit shown in Figure E 4.4-1.

Hint: Apply KCL at node a to express ia as a function of the node voltages. Substitute the result into

vb ¼ 4ia and solve for vb.

Answer: "
6

8
þ

vb

4
"

vb

12
¼ 0 ) vb ¼ 4:5 V

EXERCISE 4.4-2 Find the node voltages for the circuit shown in Figure E 4.4-2.

Hint: The controlling voltage of the dependent source is a node voltage, so it is already expressed as a

function of the node voltages. Apply KCL at node a.

Answer:
va " 6

20
þ

va " 4va

15
¼ 0 ) va ¼ "2 V

4.5 Me s h C u r r e n t A n a l y s i s w i t h I n d e p e n d e n t
V o l t a g e S o u r c e s

In this and succeeding sections, we consider the analysis of circuits using Kirchhoff’s voltage law

(KVL) around a closed path. A closed path or a loop is drawn by starting at a node and tracing a path

such that we return to the original node without passing an intermediate node more than once.

A mesh is a special case of a loop.

A mesh is a loop that does not contain any other loops within it.

Mesh current analysis is applicable only to planar networks. A planar circuit is one that can be

drawn on a plane, without crossovers. An example of a nonplanar circuit is shown in Figure 4.5-1, in

which the crossover is identified and cannot be removed by redrawing the circuit. For planar networks, the

meshes in the network look like windows. There are four meshes in the circuit shown in Figure 4.5-2.

They are identified asMi. Mesh 2 contains the elementsR3, R4, and R5. Note that the resistorR3 is common

to both mesh 1 and mesh 2.

We define a mesh current as the current through the elements constituting the mesh. Figure 4.5-3a

shows a circuit having twomeshes with themesh currents labeled as i1 and i2.Wewill use the convention of

a mesh current in the clockwise direction as shown in Figure 4.5-3a. In Figure 4.5-3b, ammeters have been

inserted into the meshes to measure the mesh currents.

One of the standard methods for analyzing an electric circuit is to write and solve a set of

simultaneous equations called the mesh equations. The unknown variables in the mesh equations are the

mesh currents of the circuit. We determine the values of the mesh currents by solving the mesh

equations.

8 Ω 12 Ω

6 V

ba

ia 4ia
+
–

+–

FIGURE E 4.4-1 A circuit with a CCVS.

20 Ω 15 Ω

6 V

ba

va 4va

+
–

+–

–

+

FIGURE E 4.4-2 A circuit with a VCVS.

Try it 

yourself 

in WileyPLUS

Try it 

yourself 

in WileyPLUS
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To write a set of mesh equations, we do two things:

1. Express element voltages as functions of the mesh currents.

2. Apply Kirchhoff’s voltage law (KVL) to each of the meshes of the circuit.

Consider the problem of expressing element voltages as functions of the mesh currents. Although

our goal is to express element voltages as functions of the mesh currents, we begin by expressing element

currents as functions of the mesh currents. Figure 4.5-3b shows how this is done. The ammeters in

Figure 4.5-3b measure the mesh currents, i1 and i2. Elements C and E are in the right mesh but not in the

left mesh. Apply Kirchhoff’s current law at node c and then at node f to see that the currents in elements

C and E are equal to the mesh current of the right mesh, i2, as shown in Figure 4.5-3b. Similarly, elements

A andD are only in the left mesh. The currents in elements A and D are equal to themesh current of the left

mesh, i1, as shown in Figure 4.5-3b.

Element B is in both meshes. The current of element B has been labeled as ib. Applying

Kirchhoff’s current law at node b in Figure 4.5-3b gives

ib ¼ i1 " i2

This equation expresses the element current ib as a function of the mesh currents i1 and i2.

Ammeter Ammeter

i1 i2

i1 i2

b

e
D E

CBA

a c

d f

i2ib

i2i1

i1

(b)

i1 i2

(a)

FIGURE 4.5-3 (a) A circuit with two meshes. (b) Inserting ammeters to measure the mesh currents.

is

Crossover

FIGURE 4.5-1 Nonplanar circuit with a crossover.

vs
+–

R1

M1

M2

M3

M4

R3

R5

R4

R2

R6

FIGURE 4.5-2 Circuit with four meshes. Each mesh is

identified by dashed lines.
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Figure 4.5-4a shows a circuit element that is in two meshes. The current of the circuit element

is expressed as a function of the mesh currents of the two meshes. The circuit element in Figure 4.5-4a

could be anything: a resistor, a current source, a dependent voltage source, and so on. In Figures 4.5-4b

and c, we consider specific types of circuit element. In Figure 4.5-4b, the circuit element is a current

source. The element current has been represented twice, once as the current source current 3 A and once

as a function of the mesh currents i1 " i2. Noticing that the reference directions for 3 A and i1 " i2 are

different (one points up, the other points down), we write

"3 ¼ i1 " i2

This equation relates the values of two of the mesh currents.

Next consider Figure 4.5-4c. In Figure 4.5-4c, the circuit element is a resistor. We will use Ohm’s

law to express the resistor voltage v as functions of the mesh currents. First, we express the resistor

current as a function of the mesh currents i1 " i2. Noticing that the resistor current i1 " i2 and the voltage

v adhere to the passive convention, we use Ohm’s law to write

v ¼ R i1 " i2ð Þ

Frequently, we know the value of the resistance. For example, when R ¼ 8V, this equation becomes

v ¼ 8 i1 " i2ð Þ

This equation expresses the resistor voltage v as a function of the mesh currents i1 and i2.

Next, let’s write mesh equations to represent the circuit shown in Figure 4.5-5a. The input to this

circuit is the voltage source voltage vs. To write mesh equations, we will first express the resistor

voltages as functions of the mesh currents and then apply Kirchhoff’s voltage law to the meshes. The

resistor currents are expressed as functions of the mesh currents in Figure 4.5-5b, and then the resistor

voltages are expressed as functions of the mesh currents in Figure 4.5-5c.

We may use Kirchhoff’s voltage law around each mesh. We will use the following convention for

obtaining the algebraic sum of voltages around a mesh. We will move around the mesh in the clockwise

direction. If we encounter theþ sign of the voltage reference polarity of an element voltage before the"
sign, we add that voltage. Conversely, if we encounter the – of the voltage reference polarity of an

element voltage before the þ sign, we subtract that voltage. Thus, for the circuit of Figure 4.5-5c,

we have

mesh 1: "vs þ R1i1 þ R3 i1 " i2ð Þ ¼ 0 ð4:5-1Þ

mesh 2: "R3 i1 " i2ð Þ þ R2i2 ¼ 0 ð4:5-2Þ

Note that the voltage across R3 in mesh 1 is determined from Ohm’s law, where

v ¼ R3ia ¼ R3 i1 " i2ð Þ

where ia is the actual element current flowing downward through R3.

Equations 4.5-1 and 4.5-2 will enable us to determine the two mesh currents i1 and i2. Rewriting

the two equations, we have

(a)

i1 i2 Rv

+

–

i1 – i2

(b)

i1 i2

i1 – i2

3 A

(c)

i1 i2

i = i1 – i2

FIGURE 4.5-4 Mesh currents i1 and i2 and element current i1 " i2 of a (a) generic circuit element, (b) current source,

and (c) resistor.
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i1 R1 þ R3ð Þ " i2R3 ¼ vs

and "i1R3 þ i2 R3 þ R2ð Þ ¼ 0

If R1 ¼ R2 ¼ R3 ¼ 1V, we have
2i1 " i2 ¼ vs

and "i1 þ 2i2 ¼ 0

Add twice the first equation to the second equation, obtaining 3i1 ¼ 2vs. Then we have

i1 ¼
2vs

3
and i2 ¼

vs

3

Thus, we have obtained two independent mesh current equations that are readily solved for the

two unknowns. If we have N meshes and write N mesh equations in terms of N mesh currents, we can

obtain N independent mesh equations. This set of N equations is independent and thus guarantees a

solution for the N mesh currents.

A circuit that contains only independent voltage sources and resistors results in a specific

format of equations that can readily be obtained. Consider a circuit with three meshes, as shown in

Figure 4.5-6. Assign the clockwise direction to all of the mesh currents. Using KVL, we obtain the three

mesh equations

mesh 1: "vs þ R1i1 þ R4 i1 " i2ð Þ ¼ 0

mesh 2: R2i2 þ R5 i2 " i3ð Þ þ R4 i2 " i1ð Þ ¼ 0

mesh 3: R5 i3 " i2ð Þ þ R3i3 þ vg ¼ 0

These three mesh equations can be rewritten by collecting coefficients for each mesh current as

mesh 1: R1 þ R4ð Þi1 " R4i2 ¼ vs
mesh 2: "R4i1 þ R5 þ R4 þ R2 þ R5ð Þi2 " R5i3 ¼ 0

mesh 3: "R5i2 þ R3 þ R5ð Þi3 ¼ "vg

vs vg

R1 R2 R3

R4 R5
+– +–i1 i2 i3 FIGURE 4.5-6 Circuit with three

mesh currents and two voltage sources.

+–

(c)

i1 i2

i1
i2

R2i2

R2

R3

R1

vs

+

+

–

–

R1i1+ –

R3(i1 – i2)

i1 – i2

+–

(b)

i1 i2

i1 i2

R2

R3

R1

vs

i1 – i2

+–

(a)

i1 i2

R2

R3

R1

vs

FIGURE 4.5-5 (a) A circuit. (b) The resistor currents expressed as functions of the mesh currents. (c) The resistor

voltages expressed as functions of the mesh currents.
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Hence, we note that the coefficient of the mesh current i1 for the first mesh is the sum of

resistances in mesh 1, and the coefficient of the second mesh current is the negative of the resistance

common to meshes 1 and 2. In general, we state that for mesh current in, the equation for the nth mesh

with independent voltage sources only is obtained as follows:

"
X

Q

q¼1

Rkiq þ
X

P

j¼1

Rjin ¼ "
X

N

n¼1

vsn ð4:5-3Þ

That is, for mesh n we multiply in by the sum of all resistances Rj around the mesh. Then we add

the terms due to the resistances in common with another mesh as the negative of the connecting

resistance Rk, multiplied by the mesh current in the adjacent mesh iq for all Q adjacent meshes.

Finally, the independent voltage sources around the loop appear on the right side of the equation as

the negative of the voltage sources encountered as we traverse the loop in the direction of the

mesh current. Remember that the preceding result is obtained assuming all mesh currents flow

clockwise.

The general matrix equation for the mesh current analysis for independent voltage sources present

in a circuit is

R i ¼ vs ð4:5-4Þ

where R is a symmetric matrix with a diagonal consisting of the sum of resistances in each mesh and the

off-diagonal elements are the negative of the sum of the resistances common to two meshes. The matrix

i consists of the mesh current as

i ¼

i1
i2
_

_

_

iN

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

For N mesh currents, the source matrix vs is

vs ¼

vs1

vs2

_

_

_

vsN

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

where vsj is the algebraic sum of the voltages of the voltage sources in the jth mesh with the

appropriate sign assigned to each voltage.

For the circuit of Figure 4.5-6 and the matrix Eq. 4.5-4, we have

R ¼
R1 þ R4ð Þ "R4 0

"R4 R2 þ R4 þ R5ð Þ "R5

0 "R5 R3 þ R5ð Þ

2

4

3

5

Note that R is a symmetric matrix, as we expected.
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EXERCISE 4.5-1 Determine the value of the voltagemeasured by the voltmeter in Figure E 4.5-1.

8 V12 V

3 Ω

6 Ω

6 Ω +– +–
Voltmeter

FIGURE E 4.5-1

Answer: "1 V

4.6 Me s h C u r r e n t A n a l y s i s w i t h
C u r r e n t a n d V o l t a g e S o u r c e s

Heretofore, we have considered only circuits with independent voltage sources for analysis by the mesh

current method. If the circuit has an independent current source, as shown in Figure 4.6-1, we recognize

that the second mesh current is equal to the negative of the current source current. We can then write

i2 ¼ "is

and we need only determine the first mesh current i1. Writing KVL for the first mesh, we obtain

R1 þ R2ð Þi1 " R2i2 ¼ vs

Because i2 ¼ "is, we have

i1 ¼
vs " R2is

R1 þ R2

ð4:6-1Þ

where is and vs are sources of known magnitude.

If we encounter a circuit as shown in Figure 4.6-2, we have a current source is that has an

unknown voltage vab across its terminals. We can readily note that

i2 " i1 ¼ is ð4:6-2Þ

by writing KCL at node a. The two mesh equations are

mesh 1: R1i1 þ vab ¼ vs ð4:6-3Þ

mesh 2: R2 þ R3ð Þi2 " vab ¼ 0 ð4:6-4Þ

vs is

R1 R3

R2
+– i1 i2

FIGURE 4.6-1 Circuit with an independent voltage

source and an independent current source.

vs is

R1 R2

R3
+– i1 i2

a

b

FIGURE 4.6-2 Circuit with an independent current

source common to both meshes.
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We note that if we add Eqs. 4.6-3 and 4.6-4, we eliminate vab, obtaining

R1i1 þ R2 þ R3ð Þi2 ¼ vs

However, because i2 ¼ is þ i1, we obtain

R1i1 þ R2 þ R3ð Þ is þ i1ð Þ ¼ vs

or i1 ¼
vs " R2 þ R3ð Þis

R1 þ R2 þ R3

ð4:6-5Þ

Thus, we account for independent current sources by recording the relationship between the mesh

currents and the current source current. If the current source influences only one mesh current, we write the

equation that relates that mesh current to the current source current and write the KVL equations for the

remaining meshes. If the current source influences two mesh currents, we write the KVL equation for both

meshes, assuming a voltage vab across the terminals of the current source. Then, adding these two mesh

equations, we obtain an equation independent of vab.

Another technique for the mesh analysis method when a current source is common to two meshes

involves the concept of a supermesh. A supermesh is one mesh created from two meshes that have a

current source in common, as shown in Figure 4.6-4.

E X A M P L E 4 . 6 - 1 Mesh Equations

Consider the circuit of Figure 4.6-3 where R1 ¼ R2 ¼ 1V and

R3 ¼ 2V. Find the three mesh currents.

Solution
Because the 4-A source is in mesh 1 only, we note that

i1 ¼ 4

For the 5-A source, we have

i2 " i3 ¼ 5 ð4.6-6Þ

Writing KVL for mesh 2 and mesh 3, we obtain

mesh 2: R1 i2 " i1ð Þ þ vab ¼ 10 ð4.6-7Þ

mesh 3: R2 i3 " i1ð Þ þ R3i3 " vab ¼ 0 ð4.6-8Þ

We substitute i1 ¼ 4 and add Eqs. 4.6-7 and 4.6-8 to obtain

R1 i2 " 4ð Þ þ R2 i3 " 4ð Þ þ R3i3 ¼ 10 ð4.6-9Þ

From Eq. 4.6-6, i2 ¼ 5þ i3, substituting into Eq. 4.6-9, we have

R1 5þ i3 " 4ð Þ þ R2 i3 " 4ð Þ þ R3i3 ¼ 10

Using the values for the resistors, we obtain

i3 ¼
13

4
A and i2 ¼ 5þ i3 ¼

33

4
A

R1 R2

R3
i2

i1

i3

a

b

5 A

4 A

10 V
+–

FIGURE 4.6-3 Circuit with two independent

current sources.

Try it 

yourself 

in WileyPLUS
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A supermesh is one larger mesh created from two meshes that have an independent or

dependent current source in common.

For example, consider the circuit of Figure 4.6-4. The 5-A current source is common to mesh 1

and mesh 2. The supermesh consists of the interior of mesh 1 and mesh 2. Writing KVL around the

periphery of the supermesh shown by the dashed lines, we obtain

"10þ 1 i1 " i3ð Þ þ 3 i2 " i3ð Þ þ 2i2 ¼ 0

For mesh 3, we have

1 i3 " i1ð Þ þ 2i3 þ 3 i3 " i2ð Þ ¼ 0

Finally, the equation that relates the current source current to the mesh currents is

i1 " i2 ¼ 5

Then the three equations may be reduced to

supermesh: 1i1 þ 5i2 " 4i3 ¼ 10

mesh 3: "1i1 " 3i2 þ 6i3 ¼ 0

current source: 1i1 " 1i2 ¼ 5

Therefore, solving the three equations simultaneously, we find that i2 ¼ 2:5A; i1 ¼ 7:5 A, and

i3 ¼ 2:5A.

1 Ω

3 Ω

2 Ω

2 Ω

1 Ω

5 A10 V
+–

i2

i3

i1

Supermesh

FIGURE 4.6-4 Circuit with a supermesh

that incorporates mesh 1 and mesh 2.

The supermesh is indicated by the dashed line.

E X A M P L E 4 . 6 - 2 Supermeshes

Determine the values of the mesh currents i1 and i2 for the circuit shown in Figure 4.6-5.

9 Ω

6 Ω1.5  A12  V i1
+– i2

3 Ω

FIGURE 4.6-5 The circuit for Example 4.6-2.

9 Ω

6 Ωv

+

–

1.5 A12 V i1
+– i2

3 Ω

FIGURE 4.6-6 Method 1 of Example 4.6-2.

Try it 

yourself 

in WileyPLUS
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Solution
We can write the first mesh equation by considering the current source. The current source current is related to the

mesh currents by

i1 " i2 ¼ 1:5 ) i1 ¼ i2 þ 1:5

Towrite the secondmesh equation, wemust decide what to do about the current source voltage. (Notice that there is

no easy way to express the current source voltage in terms of the mesh currents.) In this example, we illustrate two

methods of writing the second mesh equation.

Method 1: Assign a name to the current source voltage. Apply KVL to both of the meshes. Eliminate the

current source voltage from the KVL equations.

Figure 4.6-6 shows the circuit after labeling the current source voltage. The KVL equation for mesh 1 is

9i1 þ v " 12 ¼ 0

The KVL equation for mesh 2 is 3i2 þ 6i2 " v ¼ 0

Combining these two equations gives

9i1 þ 3i2 þ 6i2ð Þ " 12 ¼ 0 ) 9i1 þ 9i2 ¼ 12

Method 2: Apply KVL to the supermesh corresponding to the current source. Shown in Figure 4.6-7,

this supermesh is the perimeter of the two meshes that each contain the current source. Apply KVL to the

supermesh to get

9i1 þ 3i2 þ 6i2 " 12 ¼ 0 ) 9i1 þ 9i2 ¼ 12

This is the same equation that was obtained using method 1. Applying KVL to the supermesh is a shortcut for doing

three things:

1. Labeling the current source voltage as v.

2. Applying KVL to both meshes that contain the current source.

3. Eliminating v from the KVL equations.

In summary, the mesh equations are

i1 ¼ i2 þ 1:5

and 9i1 þ 9i2 ¼ 12

Solving the node equations gives

i1 ¼ 1:4167A and i2 ¼ "83:3 mA

9 Ω

6 Ω1.5 A12 V i1
+– i2

3 Ω

FIGURE 4.6-7 Method 2 of Example 4.6-2.
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EXERCISE 4.6-1 Determine the value of the voltage measured by the voltmeter in

Figure E 4.6-1.

A 3 Ω4 Ω

9 V

2 Ω

Voltmeter+ –

3 4

FIGURE E 4.6-1

Hint: Write and solve a single mesh equation to determine the current in the 3-V resistor.

Answer: "4 V

EXERCISE 4.6-2 Determine the value of the current measured by the ammeter in

Figure E 4.6-2.

3 A

15 V

6 Ω

3 Ω

Ammeter+ –

FIGURE E 4.6-2

Hint: Write and solve a single mesh equation.

Answer: "3.67 A

4.7 Me s h C u r r e n t A n a l y s i s
w i t h D e p e n d e n t S o u r c e s

When a circuit contains a dependent source, the controlling current or voltage of that

dependent source must be expressed as a function of the mesh currents.

It is then a simple matter to express the controlled current or voltage as a function of the mesh currents.

Themesh equations can then be obtained by applyingKirchhoff’s voltage law to themeshes of the circuit.
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E X A M P L E 4 . 7 - 1 Mesh Equations and

Dependent Sources

INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 4.7-1a. Find the value of the voltage measured by the voltmeter.

Solution
Figure 4.7-1b shows the circuit after replacing the voltmeter by an equivalent open circuit and labeling the voltage,

vm, measured by the voltmeter. Figure 4.7-lc shows the circuit after numbering the meshes. Let i1 and i2 denote the

mesh currents in meshes 1 and 2, respectively.

The controlling current of the dependent source, ia, is the current in a short circuit. This short circuit is

common to meshes 1 and 2. The short-circuit current can be expressed in terms of the mesh currents as

ia ¼ i1 " i2

Try it 

yourself 

in WileyPLUS

Try it 

yourself 

in WileyPLUS

Try it 

yourself 

in WileyPLUS



The dependent source is in only one mesh, mesh 2. The reference direction of the dependent source current does not

agree with the reference direction of i2. Consequently,

5ia ¼ "i2

Solving for i2 gives i2 ¼ "5ia ¼ "5 i1 " i2ð Þ

Therefore; "4i2 ¼ "5i1 ) i2 ¼
5

4
i1

Apply KVL to mesh 1 to get 32i1 " 24 ¼ 0 ) i1 ¼
3

4
A

Consequently, the value of i2 is i2 ¼
5

4

3

4

# $

¼
15

16
A

Apply KVL to mesh 2 to get 32i2 " vm ¼ 0 ) vm ¼ 32i2

Finally; vm ¼ 32
15

16

# $

¼ 30 V

E X A M P L E 4 . 7 - 2 Mesh Equations and

Dependent Sources

INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 4.7-2a. Find the value of the gain A of the CCVS.

Solution
Figure 4 7-2b shows the circuit after replacing the voltmeter by an equivalent open circuit and labeling the voltage

measured by the voltmeter. Figure 4.7-2c shows the circuit after numbering the meshes. Let i1 and i2 denote the

mesh currents in meshes 1 and 2, respectively.

The voltage across the dependent source is represented in two ways. It is Aia with theþ of reference direction

at the bottom and "7.2 V with the þ at the top. Consequently,

Aia ¼ " "7:2ð Þ ¼ 7:2 V

The controlling current of the dependent source, ia, is the current in a short circuit. This short circuit is common to

meshes 1 and 2. The short-circuit current can be expressed in terms of the mesh currents as

ia ¼ i1 " i2

Voltmeter+–

vm

+

–

32 Ω

24 V

+– 24 V

32 Ω

32 Ω32 Ω

ia 5ia

5iaia

(a)

(b)

vm

+

–

+–24 V

32 Ω32 Ω

1 2 5iaia

(c)

FIGURE 4.7-1 (a) The circuit

considered in Example 4.7-1.

(b) The circuit after replacing the

voltmeter by an open circuit. (c) The

circuit after labeling the meshes.

Try it 

yourself 

in WileyPLUS
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4.8 T h e N o d e V o l t a g e M e t h o d a n d Me s h C u r r e n t
M e t h o d C omp a r e d

The analysis of a complex circuit can usually be accomplished by either the node voltage or the mesh

current method. The advantage of using these methods is the systematic procedures provided for

obtaining the simultaneous equations.

In some cases, one method is clearly preferred over another. For example, when the circuit contains

only voltage sources, it is probably easier to use the mesh current method. When the circuit contains only

current sources, it will usually be easier to use the node voltage method.

Apply KVL to mesh 1 to get 10i1 " 36 ¼ 0 ) i1 ¼ 3:6 A

Apply KVL to mesh 2 to get 4i2 þ "7:2ð Þ ¼ 0 ) i2 ¼ 1:8 A

Finally; A ¼
Aia

ia
¼

Aia

i1 " i2
¼

7:2

3:6" 1:8
¼ 4 V/A

Voltmeter+–

+

–

4 Ω

–7.2 V

36 V

+– 36 V

10 Ω

4 Ω10 Ω

ia Aia

Aiaia

(a)

(b)

+–36 V–7.2 V

+

–

–7.2 V

4 Ω10 Ω

1 2 Aiaia

(c)

+
–

+
–

+
–

FIGURE 4.7-2 (a) The circuit considered in Example 4.7-2. (b) The circuit after replacing the voltmeter by an open circuit. (c) The

circuit after labeling the meshes.

E X A M P L E 4 . 8 - 1 Mesh Equations INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 4.8-1. Find the value of the resistance, R.

Ammeter

2 Ω

0.5 A

3 A

2 Ω

12 Ω6 Ω

1 A

R

FIGURE 4.8-1 The circuit considered in Example 4.8-1.

Try it 

yourself 

in WileyPLUS
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Solution
Figure 4.8-2a shows the circuit from Figure 4.8-1 after replacing the ammeter by an equivalent short circuit and

labeling the current measured by the ammeter. This circuit can be analyzed using mesh equations or using node

equations. To decide which will be easier, we first count the nodes and meshes. This circuit has five nodes. Selecting a

reference node and then applying KCL at the other four nodes will produce a set of four node equations. The circuit has

three meshes. Applying KVL to these three meshes will produce a set of three mesh equations. Hence, analyzing this

circuit using mesh equations instead of node equations will produce a smaller set of equations. Further, notice that two

of the three mesh currents can be determined directly from the current source currents. This makes the mesh equations

easier to solve. We will analyze this circuit by writing and solving mesh equations.

Figure 4.8-2b shows the circuit after numbering the meshes. Let i1, i2, and i3 denote the mesh currents in

meshes 1, 2, and 3, respectively. The mesh current i1 is equal to the current in the 1-A current source, so

i1 ¼ 1 A

The mesh current i2 is equal to the current in the 3-A current source, so

i2 ¼ 3 A

The mesh current i3 is equal to the current in the short circuit that replaced the ammeter, so

i3 ¼ 0:5 A

Apply KVL to mesh 3 to get

2 i3 " i1ð Þ þ 12 i3ð Þ þ R i3 " i2ð Þ ¼ 0

Substituting the values of the mesh currents gives

2 0:5" 1ð Þ þ 12 0:5ð Þ þ R 0:5" 3ð Þ ¼ 0 ) R ¼ 2 V

(b)(a)

R3 A 0.5 A

1

2 3

1 A

2 Ω 2 Ω

6 Ω 12 Ω

R3 A 0.5 A

1 A

2 Ω 2 Ω

6 Ω 12 Ω

FIGURE 4.8-2 (a) The

circuit from Figure 4.8-1

after replacing the

ammeter by a short

circuit. (b) The circuit

after labeling the

meshes.

E X A M P L E 4 . 8 - 2 Node Equations INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 4.8-3. Find the value of the resistance, R.

R
Voltmeter

2 Ω

16 V

16 V

18 V

2 Ω

2 A

+ –

+–

FIGURE 4.8-3 The circuit considered in Example 4.8-2.

Try it 

yourself 

in WileyPLUS
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If a circuit has both current sources and voltage sources, it can be analyzed by either method. One

approach is to compare the number of equations required for each method. If the circuit has fewer nodes

than meshes, it may be wise to select the node voltage method. If the circuit has fewer meshes than

nodes, it may be easier to use the mesh current method.

Another point to consider when choosing between the two methods is what information is

required. If you need to know several currents, it may be wise to proceed directly with mesh current

analysis. Remember, mesh current analysis only works for planar networks.

It is often helpful to determine which method is more appropriate for the problem requirements

and to consider both methods.

Solution
Figure 4.8-4a shows the circuit from Figure 4.8-3 after replacing the voltmeter by an equivalent open circuit

and labeling the voltage measured by the voltmeter. This circuit can be analyzed using mesh equations or node

equations. To decide which will be easier, we first count the nodes and meshes. This circuit has four nodes. Selecting a

reference node and then applying KCL at the other three nodes will produce a set of three node equations. The circuit

has three meshes. Applying KVL to these three meshes will produce a set of three mesh equations. Analyzing

this circuit using mesh equations requires the same number of equations that are required to analyze the circuit using

node equations. Notice that one of the three mesh currents can be determined directly from the current source current,

but two of the three node voltages can be determined directly from the voltage source voltages. This makes the node

equations easier to solve. We will analyze this circuit by writing and solving node equations.

Figure 4.8-4b shows the circuit after selecting a reference node and numbering the other nodes. Let v1, v2, and

v3 denote the node voltages at nodes 1, 2, and 3, respectively. The voltage of the 16-V voltage source can be

expressed in terms of the node voltages as

16 ¼ v1 " 0 ) v1 ¼ 16 V

The voltage of the 18-V voltage source can be expressed in terms of the node voltages as

18 ¼ v1 " v2 ) 18 ¼ 16" v2 ) v2 ¼ "2 V

The voltmeter measures the node voltage at node 3, so

v3 ¼ 16 V

Applying KCL at node 3 to get
v1 " v3

2
þ 2 ¼

v3

R

Substituting the values of the node voltages gives

16" 16

2
þ 2 ¼

16

R
) R ¼ 8V
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(b)(a)

R R16 V16 V

18 V 2 A

16 V

18 V 2 A

2 Ω 2 Ω

2 Ω 2 Ω

+ –

+–

+ –

+–

+

–

16 V

+

–

1 3
2

FIGURE 4.8-4 (a) The

circuit from Figure 4.8-3

after replacing the

voltmeter by an open

circuit. (b) The circuit

after labeling the nodes.



4.9 C i r c u i t A n a l y s i s U s i n g MAT L AB

We have seen that circuits that contain resistors and independent or dependent sources can be analyzed

in the following way:

1. Writing a set of node or mesh equations.

2. Solving those equations simultaneously.

In this section, we will use the MATLAB computer program to solve the equations.

Consider the circuit shown in Figure 4.9-1a. This circuit contains a potentiometer. In Figure

4.9-1b, the potentiometer has been replaced by a model of a potentiometer. Rp is the resistance of

the potentiometer. The parameter a varies from 0 to 1 as the wiper of the potentiometer is moved

from one end of the potentiometer to the other. The resistances R4 and R5 are described by the

equations

R4 ¼ aRp ð4:9-1Þ

and R5 ¼ 1" að ÞRp ð4:9-2Þ

Our objective is to analyze this circuit to determine how the output voltage changes as the position of the

potentiometer wiper is changed.

The circuit in Figure 4.9-1b can be represented by mesh equations as

R1i1 þ R4i1 þ R3 i1 " i2ð Þ " v1 ¼ 0

R5i2 þ R2i2 þ v2 " R3 i1 " i2ð Þ½ ) ¼ 0
ð4:9-3Þ

These mesh equations can be rearranged as

R1 þ R4 þ R3ð Þi1 " R3i2 ¼ v1
"R3i1 þ R5 þ R2 þ R3ð Þi2 ¼"v2

ð4:9-4Þ

Substituting Eqs. 4.9-1 and 4.9-2 into Eq. 4.9-4 gives

R1 þ aRp þ R3

. /

i1 " R3i2 ¼ v1
"R3i1 þ 1" að ÞRp þ R2 þ R3

0 1

i2 ¼"v2
ð4:9-5Þ

+–+–

(a)

i2i1v1 v2
R3

R1 Rp R2

vo

+

–

+–+–

(b)

v1 v2
R3

R1 R4 = aRp R5 = (1 – a)Rp R2

vo

+

–

FIGURE 4.9-1 (a) A circuit that contains a potentiometer and (b) an equivalent circuit formed by replacing the

potentiometer with a model of a potentiometer 0 < a < 1Þð .
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Equation 4.9-5 can be written using matrices as

R1 þ aRP þ R3 "R3

"R3 1" að ÞRP þ R2 þ R3

+ ,

i1
i2

+ ,

¼
v1
"v2

+ ,

ð4:9-6Þ

 !"#$%&"!$'()#$!"#$%!#*+,-.'/$

 000000000000000000000000000000000000000000000000000000000

 !1/-#2!),(+#$!'3!-%#!4,2,"#-#2$!-%,-!5#$62.7#!-%#!6.26+.-&

 000000000000000000000000000000000000000000000000000000000

!!!!!!!!!!!!!!! !6.26+.-!4,2,"#-#2$

89:9;;;<!!!!!!! !'%"$

8=:9;;;<!!!!!!! !'%"$

8>:?;;;<!!!!!!! !'%"$

@9:!9?<!!!!!!!! !)'(-$

@=:09?<!!!!!!!! !)'(-$

!!!!!!!!!!!!!!! !4'-#/-.'"#-#2!4,2,"#-#2$

84:=;#><!!!!!!! !'%"$

 00000000000000000000000000000000000000000000000000000000

 !-%#!4,2,"#-#2!,!),2.#$!32'"!;!-'!9!./!;&;?!./62#"#/-$&

 00000000000000000000000000000000000000000000000000000000!

,:;A;&;?A9<!!!! !5."#/$.'/(#$$

3'2!B:9A(#/C-%D,E

!!!! 00000000000000000000000000000000000000000000000000000

!!!! !F#2#!.$!-%#!"#$%!#*+,-.'/G!8@:HA

!!!! 00000000000000000000000000000000000000000000000000000

!!!!8!:!I89J,DBEK84J8>!!!!!!!!08><!!!!!!!!!!!!!! !000000

!!!!!!!!!!!!!08>!!!!!!!D90,DBEEK84J8=J8>L<!!!!!! !!#*/&

!!!!@!:!I!@9<!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!M0N0O

!!!!!!!!!0@=L<!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !000000

!!!! 00000000000000000000000000000000000000000000000000000

!!!! !P#((!QRPSRT!-'!$'()#!-%#!"#$%!#*+,-.'/A

!!!! 00000000000000000000000000000000000000000000000000000

!!!!H!:!8U@<

!!!! 00000000000000000000000000000000000000000000000000000

!!!! !V,(6+(,-#!-%#!'+-4+-!)'(-,C#!32'"!-%#!"#$%!6+22#/-$&

!!!! 00000000000000000000000000000000000000000000000000000

!!!!@'DBE!:!8>KDHD9E0HD=EE<!!!! !#*/&!M&N0W

#/5

 0000000000000000000000000000000000000000000000000000000000

 !X('-!@'!)#2$+$!,

 0000000000000000000000000000000000000000000000000000000000

4('-D,G!@'E!!!!!!!!

,Y.$DI;!9!09?!9?LE!

Y(,7#(DZ,G!5."#/$.'/(#$$ZE

[(,7#(DZ@'G!@ZE

FIGURE 4.9-2 MATLAB input file used to analyze the circuit shown in Figure 4.9-1.
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Next, i1 and i2 are calculated by using MATLAB to solve

the mesh equation, Eq. 4.9-6. Then the output voltage is

calculated as

vo ¼ R3 i1 " i2ð Þ ð4:9-7Þ

Figure 4.9-2 shows the MATLAB input file. The param-

eter a varies from 0 to 1 in increments of 0.05. At each value of

a, MATLAB solves Eq. 4.9-6 and then uses Eq. 4.9-7 to

calculate the output voltage. Finally, MATLAB produces the

plot of vo versus a that is shown in Figure 4.9-3.

4.10 U s i n g P S p i c e t o D e t e rm i n e
N o d e V o l t a g e s a n d M e s h C u r r e n t s

To determine the node voltages of a dc circuit using PSpice, we

1. Draw the circuit in the OrCAD Capture workspace.

2. Specify a “Bias Point” simulation.

3. Run the simulation.

PSpice will label the nodes with the values of the node voltages.

–15

–10

–5

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
o
, 
V

a, dimensionless

FIGURE 4.9-3 Plot of vo versus a for the circuit shown

in Figure 4.9-1.

E X A M P L E 4 . 1 0 - 1 Using PSpice to Find Node Voltages

and Mesh Currents

Use PSpice to determine the values of the node voltages and mesh currents for the circuit shown in Figure 4.10-1.

10 Ω

5 Ω

15 Ω

25 Ω

20 Ω

i2 i3

i1

i4

0.2 A

0.5 A 30 V
v2 v3

v3v1 + –

FIGURE 4.10-1 A circuit having node voltages v1, v2, v3,

and v4 and mesh currents i1, i2, i3, and i4.

0.5A
30V

0V

0

–10.61V

–

+

+

+

–

–

–6.106V –7.660V

22.34V

0.2A10

15

5

20 25

FIGURE 4.10-2 The circuit from Figure 4.10-1 drawn

in the OrCAD workspace. The white numbers shown

on black backgrounds are the values of the node voltages.
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Solution
Figure 4.10-2 shows the result of drawing the circuit in the OrCAD workspace (see Appendix A) and performing a

Bias Point simulation. (Select PSpice\New Simulation Profile from the OrCAD Capture menu bar; then choose

Bias Point from the Analysis Type drop-down list in the Simulation Settings dialog box to specify a Bias Point

simulation. Select PSpice\Run Simulation Profile from the OrCAD Capture menu bar to run the simulation.)

PSpice labels the nodes with the values of the node voltages using white numbers shown on black backgrounds.

Comparing Figures 4.10-1 and 4.10-2, we see that the node voltages are

v1 ¼ "6:106 V; v2 ¼ "10:61 V; v3 ¼ 22:34 V; and v4 ¼ "7:660 V:

Figure 4.10-3 shows the circuit from Figure 4.10-2 after inserting a 0-V current source on the outside of each mesh.

The currents in these 0-V sources will be the mesh currents shown in Figure 4.10-1. In particular, source V2

measures mesh current i1, source V3 measures mesh current i2, source V4 measures mesh current i3, and source V5

measures mesh current i4.

After we rerun the simulation (Select PSpice\Run from the OrCAD Capture menu bar), OrCAD Capture will

open a Schematics window. Select View\Output File from the menu bar in the Schematics window. Scroll down

through the output file to find the currents in the voltage sources:

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V V1 " 6:170E" 01

V V2 3:106E" 01

V V3 " 3:064E" 01

V V4 8:106E" 01

V V5 6:106E" 01

TOTAL POWER DISSIPATION 1:85Eþ 01 WATTS

JOB CONCLUDED

PSpice uses the passive convention for the current and voltage of all circuit elements, including voltage sources.

Noticing the smallþ and" signs on the voltage source symbols in Figure 4.10-3, we see that the currents provided

by PSpice are directed form left to right in sources VI and V2 and are directed from right to left in sources V3, V4,

and V5. In particular, the mesh currents are

i1 ¼ 0:3106 A; i2 ¼ 0:6106 A; i3 ¼ 0:8106 A; and i4 ¼ "0:3064 A:

0.5A

30VV1

V2 0Vdc

0

–

+

+

+

–

–

+ –
+–+– +–

0.2A

10

V5 0Vdc V4 0Vdc V3 0Vdc

15

5

20 25

FIGURE 4.10-3 The circuit from Figure 4.10-1 drawn in

the OrCAD workspace with 0-V voltage sources added

to measure the mesh currents.
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An extra step is needed to use PSpice to determine the mesh currents. PSpice does not label the

values of the mesh currents, but it does provide the value of the current in each voltage source. Recall

that a 0-V voltage source is equivalent to a short circuit. Consequently, we can insert 0-V current

sources into the circuit without altering the values of the mesh currents. Wewill insert those sources into

the circuit in such a way that their currents are also the mesh currents. To determine the mesh currents of

a dc circuit using PSpice, we

1. Draw the circuit in the OrCAD Capture workspace.

2. Add 0-V voltage sources to measure the mesh currents.

3. Specify a Bias Point simulation.

4. Run the simulation.

PSpice will write the voltage source currents in the output file.

4.11 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct.

For example, proposed solutions to design problems must be checked to confirm that all of the

specifications have been satisfied. In addition, computer output must be reviewed to guard against

data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,

occasionally just a little time remains at the end of an exam. It is useful to be able quickly to identify

those solutions that need more work.

The following examples illustrate techniques useful for checking the solutions of the sort of

problem discussed in this chapter.

E X A M P L E 4 . 1 1 - 1 How Can We Check Node Voltages?

The circuit shown in Figure 4.11-1a was analyzed using PSpice. The PSpice output file, Figure 4.11-1b, includes

the node voltages of the circuit. How can we check that these node voltages are correct?

Solution
The node equation corresponding to node 2 is

V 2ð Þ " V 1ð Þ

100
þ

V 2ð Þ

200
þ

V 2ð Þ " V 3ð Þ

100
¼ 0

where, for example, V(2) is the node voltage at node 2. When the node voltages from Figure 4.11-1b are substituted

into the left-hand side of this equation, the result is

7:2727" 12

100
þ
7:2727

200
þ
7:2727" 5:0909

100
¼ 0:011

The right-hand side of this equation should be 0 instead of 0.011. It looks like something is wrong. Is a current of

only 0.011 negligible? Probably not in this case. If the node voltages were correct, then the currents of the 100-V

resistors would be 0.047 A and 0.022 A, respectively. The current of 0.011 A does not seem negligible when

compared to currents of 0.047 A and 0.022 A.

146 4. Methods of Analysis of Resistive Circuits



How Can We Check . . . ? 147

Is it possible that PSpice would calculate the node voltages incorrectly? Probably not, but the PSpice

input file could easily contain errors. In this case, the value of the resistance connected between nodes 2 and 3

has been mistakenly specified to be 200V. After changing this resistance to 100V, PSpice calculates the node

voltages to be

V 1ð Þ ¼ 12:0; V 2ð Þ ¼ 7:0; V 3ð Þ ¼ 5:5; V 4ð Þ ¼ 8:0

Substituting these voltages into the node equation gives

7:0" 12:0

100
þ

7:0

200
þ
7:0" 5:5

100
¼ 0:0

so these node voltages do satisfy the node equation corresponding to node 2.

+–+–

(a) (b)

1 2 3 4

100 Ω 100 Ω 200 Ω

200 Ω 200 Ω12 V 8 V

0

 !"#
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-

-

/

/
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0

1

3

/

3

0

3

1

3

-/

-33
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/33
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7) 6
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 56)
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=1>????473333

$589:;)

FIGURE 4.11-1 (a) A circuit and (b) the node voltages calculated using PSpice. The bottom node has been chosen as the reference

node, which is indicated by the ground symbol and the node number 0. The voltages and resistors have units of voltages

and ohms, respectively.

E X A M P L E 4 . 1 1 - 2 How Can We Check Mesh Currents?

The circuit shown in Figure 4.11-2a was analyzed using PSpice. The PSpice output file, Figure 4.11-2b, includes

the mesh currents of the circuit. How can we check that these mesh currents are correct?

(The PSpice output file will include the currents through the voltage sources. Recall that PSpice uses the

passive convention, so the current in the 8-V source will be –i1 instead of i1. The two 0-V sources have been added

to include mesh currents i2 and i3 in the PSpice output file.)



Solution
The mesh equation corresponding to mesh 2 is

200 i2 " i1ð Þ þ 500i2 þ 250 i2 " i3ð Þ ¼ 0

When the mesh currents from Figure 4.11-2b are substituted into the left-hand side of this equation, the result is

200 "0:004068" 0:01763Þ þ 500 "0:004068ð Þ þ 250 "0:004068" "0:001356ð Þð Þ ¼ 1:629ð

The right-hand side of this equation should be 0 instead of 1.629. It looks like something is wrong. Most likely,

the PSpice input file contains an error. This is indeed the case. The nodes of both 0-V voltage sources

have been entered in the wrong order. Recall that the first node should be the positive node of the voltage

source. After correcting this error, PSpice gives

i1 ¼ 0:01763; i2 ¼ 0:004068; i3 ¼ 0:001356

Using these values in the mesh equation gives

200 0:004068" 0:01763Þ þ 500 0:004068ð Þ þ 250 0:004068" 0:001356ð Þ ¼ 0:0ð

These mesh currents do indeed satisfy the mesh equation corresponding to mesh 2.
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FIGURE 4.11–2 (a) A circuit and (b) the mesh currents calculated using PSpice. The voltages and resistances are given in volts and

ohms, respectively.
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4 . 1 2 D E S I G N E X A M P L E Potentiometer Angle Display

A circuit is needed to measure and display the angular position of a potentiometer shaft. The angular position, y,

will vary from "180* to 180*.

Figure 4.12-1 illustrates a circuit that could do the job. The +15-V and –15-V power supplies, the

potentiometer, and resistors R1 and R2 are used to obtain a voltage, vi, that is proportional to y. The amplifier

is used to change the constant of proportionality to obtain a simple relationship between y and the voltage, vo,

displayed by the voltmeter. In this example, the amplifier will be used to obtain the relationship

vo ¼ k + ywhere k ¼ 0:1
volt

degree
ð4:12-1Þ

so that y can be determined by multiplying the meter reading by 10. For example, a meter reading of "7.32 V

indicates that y ¼ "73:2*.

Describe the Situation and the Assumptions
The circuit diagram in Figure 4.12-2 is obtained by modeling the power supplies as ideal voltage sources, the

voltmeter as an open circuit, and the potentiometer by two resistors. The parameter a in the model of the

potentiometer varies from 0 to 1 as y varies from "180* to 180*. That means

a ¼
y

360*
þ
1

2
ð4:12-2Þ

+
–

R1

Rp

R2

+15 V

–15 V

Amplifier

vi bvi

vo
100 Ω

2 MΩ

+

–

+ –

Voltmeter

FIGURE 4.12-1 Proposed circuit for measuring and displaying the angular position of the potentiometer shaft.

+–+–

R1 R2

vobvi
vi

+

–

+

–

15 V –15 V

aRp (1 – a)Rp

+
–

100 Ω

2 MΩ

FIGURE 4.12-2 Circuit diagram

containing models of the power supplies,

voltmeter, and potentiometer.
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Solving for y gives

y ¼ a "
1

2

# $

+ 360* ð4:12-3Þ

State the Goal
Specify values of resistors R1 and R2, the potentiometer resistance RP, and the amplifier gain b that will cause the

meter voltage vo to be related to the angle y by Eq. 4.12-1.

Generate a Plan
Analyze the circuit shown in Figure 4.12-2 to determine the relationship between vi and y. Select values of R1,

R2, and Rp. Use these values to simplify the relationship between vi and y. If possible, calculate the value of b

that will cause the meter voltage vo to be related to the angle y by Eq. 4.12-1. If this isn’t possible, adjust the

values of R1, R2, and Rp and try again.

Act on the Plan
The circuit has been redrawn in Figure 4.12-3. A single node equation will provide the relationship between

between vi and y:

vi

2MV
þ

vi " 15

R1 þ aRp

þ
vi " "15ð Þ

R2 þ 1" að ÞRp

¼ 0

Solving for vi gives

vi ¼
2MV Rp 2a " 1ð Þ þ R1 " R2

. /

15

R1 þ aRp

. /

R2 þ 1" að ÞRp

. /

þ 2MV R1 þ R2 þ Rp

. / ð4:12-4Þ

This equation is quite complicated. Let’s put some restrictions on R1, R2, and Rp that will make it possible to

simplify this equation. First, let R1= R2= R. Second, require that both R and Rp be much smaller than 2 MV (for

example, R < 20 kV). Then,

R þ aRp

. /

R þ 1" að ÞRp

. /

, 2MV 2R þ Rp

. /

That is, the first term in the denominator of the left side of Eq. 4.12-4 is negligible compared to the second term.

Equation 4.12-4 can be simplified to

vi ¼
Rp 2a " 1ð Þ15

2R þ Rp

+–+–

R1 R2

vo = bvibvi

vi
+

–

+

–15 V –15 V

aRp (1 – a)Rp

+
–

100 Ω2 MΩ

io = 0

FIGURE 4.12-3 The redrawn circuit showing the mode vi.
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Next, using Eq. 4.12-3,

vi ¼
Rp

2R þ Rp

# $

15 V

180*

# $

y

It is time to pick values for R and Rp. Let R ¼ 5 kV and Rp ¼ 10 kV; then

vi ¼
7:5 V

180*

# $

Referring to Figure 4.12-2, the amplifier output is given by

vo ¼ bvi ð4:12-5Þ

so vo ¼ b
7:5 V

180*

# $

y

Comparing this equation to Eq. 4.12-1 gives

b
7:5 V

180*

# $

¼ 0:1
volt

degree

or b ¼
180

7:5
0:1ð Þ ¼ 2:4

The final circuit is shown in Figure 4.12-4.

Verify the Proposed Solution
As a check, suppose y ¼ 150*. From Eq. 4.12-2, we see that

a ¼
150*

360*
þ
1

2
¼ 0:9167

Using Eq. 4.12-4, we calculate

vi ¼
2MV 10 kV 2- 0:9167" 1ð Þð Þ15

5 kVþ 0:9167- 10 kVð Þ 5 kVþ 1" 0:9167ð Þ10 kVð Þ þ 2MV 2- 5 kVþ 10 kVð Þ
¼ 6:24

Finally, Eq. 4.12-5 indicates that the meter voltage will be

vo - 2:4 + 6:24 ¼ 14:98

This voltage will be interpreted to mean that the angle was

y ¼ 10 + vo ¼ 149:8*

which is correct to three significant digits.

+
–
+
–

+15 V

–15 V

Amplifier

vi 2.4vi

vo
100 Ω

2 MΩ

20 kΩ

10 kΩ

10 kΩ

+

–

+ –

Voltmeter

FIGURE 4.12-4 The final designed circuit.
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4.13 SUMMARY
The node voltage method of circuit analysis identifies the

nodes of a circuit where two or more elements are connected.

When the circuit consists of only resistors and current sources,

the following procedure is used to obtain the node equations.

1. We choose one node as the reference node. Label the

node voltages at the other nodes.

2. Express element currents as functions of the node volt-

ages. Figure 4.13-1a illustrates the relationship between

the current in a resistor and the voltages at the nodes of the

resistor.

3. Apply KCL at all nodes except for the reference node.

Solution of the simultaneous equations results in knowl-

edge of the node voltages. All the voltages and currents in

the circuit can be determined when the node voltages are

known.

When a circuit has voltage sources as well as current sources,

we can still use the node voltage method by using the concept

of a supernode. A supernode is a large node that includes two

nodes connected by a known voltage source. If the voltage

source is directly connected between a nodeq and the reference

node, we may set vq = vs and write the KCL equations at the

remaining nodes.

If the circuit contains a dependent source, we first express the

controlling voltage or current of the dependent source as a

function of the node voltages. Next, we express the controlled

voltage or current as a function of the node voltages. Finally,

we apply KCL to nodes and supernodes.

Mesh current analysis is accomplished by applying KVL to

the meshes of a planar circuit. When the circuit consists of

only resistors and voltage sources, the following procedure is

used to obtain the mesh equations.

1. Label the mesh currents.

2. Express element voltages as functions of the mesh cur-

rents. Figure 4.13-1b illustrates the relationship between

the voltage across a resistor and the currents of the meshes

that include the resistor.

3. Apply KVL to all meshes.

Solution of the simultaneous equations results in knowl-

edge of the mesh currents. All the voltages and currents in

the circuit can be determined when the mesh currents are

known.

If a current source is common to two adjoining meshes, we

define the interior of the two meshes as a supermesh. We then

write the mesh current equation around the periphery of the

supermesh. If a current source appears at the periphery of

only one mesh, we may define that mesh current as equal to

the current of the source, accounting for the direction of the

current source.

If the circuit contains a dependent source, we first express the

controlling voltage or current of the dependent source as a

function of the mesh currents. Next, we express the controlled

voltage or current as a function of the mesh currents. Finally,

we apply KVL to meshes and supermeshes.

In general, either node voltage or mesh current analysis can

be used to obtain the currents or voltages in a circuit.

However, a circuit with fewer node equations than mesh

current equations may require that we select the node voltage

method. Conversely, mesh current analysis is readily appli-

cable for a circuit with fewer mesh current equations than

node voltage equations.

MATLAB greatly reduces the drudgery of solving node or

mesh equations.

(a) (b)

R1

R1

R1

R3 R3R2

R2

R2i2

vb

(va – vb) (i1 – i2)

R3(i1 – i2)

va – vb

–

–

–

–
+

+

+

R1i1 –+

va

–

+
+

is va vb

a b

R2

va

R3

vb

i2i1

+– +–i1 i2

FIGURE 4.13-1 Expressing resistor currents and voltages in terms of (a) node voltage or (b) mesh currents.
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PROBLEMS

Section 4.2 Node Voltage Analysis of Circuits with

Current Sources

P 4.2-1 The node voltages in the circuit of Figure P 4.2-1

are v1 ¼ "4 V and v2 ¼ 2 V. Determine i, the current of the

current source.

Answer: i ¼ 1.5 A

6 Ω

8 Ω

v1 v2

4 Ω

i

Figure P 4.2-1

P 4.2-2 Determine the node voltages for the circuit of Figure

P 4.2-2.

Answer: v1 ¼ 2 V; v2 ¼ 30 V; and v3 ¼ 24 V

v1

v2
v3

2 A

10 Ω

1 A

20 Ω 

15 Ω5 Ω 

Figure P 4.2-2

P 4.2-3 The encircled numbers in the circuit shown in Figure

P 4.2-3 are node numbers. Determine the values of the corre-

sponding node voltages v1 and v2.

25 mA
25 �15 �

40 �
1 2

Figure P 4.2-3

P 4.2-4 Consider the circuit shown in Figure P 4.2-4. Find

values of the resistances R1 and R2 that cause the voltages v1
and v2 to be v1 ¼ 1V and v2 ¼ 2 V.

R1 R2v1

+

–
v2

+

–

500 Ω

3 mA 5 mA

Figure P 4.2-4

P 4.2-5 Find the voltage v for the circuit shown in

Figure P 4.2-5.

Answer: v ¼ 21.7 mV

1 mA

250 Ω

250 Ω

125 Ω 

v

500 Ω500 Ω 

+ –

Figure P 4.2-5

P 4.2-6 Simplify the circuit shown in Figure P 4.2-6 by

replacing series and parallel resistors with equivalent resistors;

then analyze the simplified circuit by writing and solving node

equations. (a) Determine the power supplied by each current

source. (b) Determine the power received by the 12-V resistor.

3 mA 2 mA

20 Ω

40 Ω

10 Ω12 Ω

10 Ω 60 Ω 120 Ω

Figure P 4.2-6

P 4.2-7 The node voltages in the circuit shown in Figure

P 4.2-7 are va ¼ 7 V and vb ¼ 10 V. Determine values of the

current source current, is, and the resistance, R.

2 Ω

a

4 Ω 8 Ω 8 Ω

b

i s
R

2 A

Figure P 4.2-7

P 4.2-8 The encircled numbers in the circuit shown in Figure

P 4.2-8 are node numbers. The corresponding node voltages are

v1 and v2. The node equation representing this circuit is

Problem available in WileyPLUS at instructor’s discretion.
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0:225 "0:125
"0:125 0:125

+ ,

v 1

v 2

+ ,

¼
"3

2

+ ,

(a) Determine the values of R and Is in Figure P 4.2-8.

(b) Determine the value of the power supplied by the 3-A

current source.

1 2

3 A

8 Ω

R I s

Figure P 4.2-8

Section 4.3 Node Voltage Analysis of Circuits

with Current and Voltage Sources

P 4.3-1 The voltmeter in Figure P 4.3-1 measures vc, the

node voltage at node c. Determine the value of vc.

Answer: vc ¼ 2 V

Voltmeter
+–

10 Ω

8 Ω6 V 2 A

a b c6 Ω

vc

+

–

Figure P 4.3-1

P 4.3-2 Thevoltagesva,vb,vc, and vd inFigureP4.3-2 are the

node voltages corresponding to nodes a, b, c, and d. The current

i is the current in a short circuit connected between nodes b and c.

Determine the values of va, vb, vc, and vd and of i.

Answer: va ¼ "12 V; vb ¼ vc ¼ 4 V; vd ¼ "4 V; i ¼ 2 mA

+–
+ –

va

+

–

vd

+

–

vc

+

–

vb

+

–

4 kΩ

4 kΩ

8 V

1 mA2 mA12 V

a b c d
i

Figure P 4.3-2

P 4.3-3 Determine the values of the power supplied by each of

the sources in the circuit shown in Figure P 4.3-3.

0.6 A 40 Ω

10 Ω

40 Ω12 V+–

+–
24 V

Figure P 4.3-3

P 4.3-4 Determine the values of the node voltages v1, v2, and

v3 in the circuit shown in Figure P 4.3-4.

10 V

50 Ω25 Ω

40 Ω15 V

v2

+–+–

20 Ω

v1

10 Ω

v3

+–
15 V

Figure P 4.3-4

P 4.3-5 The voltages va, vb, and vc in Figure P 4.3-5 are the

node voltages corresponding to nodes a, b, and c. The values of

these voltages are:

va ¼ 12 V; vb ¼ 9:882 V; and vc ¼ 5:294 V

Determine the power supplied by the voltage source.

12 V 1 A

a c
b

6 Ω

4 Ω 3 Ω

2 Ω
+–

+

–

vc

+

–

vb

+

–

va

Figure P 4.3-5

P 4.3-6 The voltmeter in the circuit of Figure P 4.3-6

measures a node voltage. The value of that node voltage

depends on the value of the resistance R.

(a) Determine the value of the resistance R that will cause the

voltage measured by the voltmeter to be 4 V.

(b) Determine the voltage measured by the voltmeter when

R ¼ 1:2 kV ¼ 1200V.

Answers: (a) 6 kV (b) 2V

+–+–

6 kΩ

12 V 8 V2 mA

3 kΩ

Voltmeter

R

Figure P 4.3-6

154 4. Methods of Analysis of Resistive Circuits



P 4.3-7 Determine the values of the node voltages v1
and v2 in Figure P 4.3-7. Determine the values of the

currents ia and ib.

10 V v1 v2

ib

ia

4 kΩ

5 kΩ

3 kΩ

1 kΩ

2 kΩ

+–

Figure P 4.3-7

P 4.3-8 The circuit shown in Figure P 4.3-8 has two inputs, v1
and v2, and one output, vo. The output is related to the input by

the equation

vo ¼ av1 þ bv2

where a and b are constants that depend on R1, R2, and R3.

(a) Determine the values of the coefficients a and b when

R1 ¼ 10V;R2 ¼ 40V; and R3 ¼ 8V.

(b) Determine the values of the coefficients a and b when

R1 ¼ R2 and R3 ¼ R1jjR2.

v1 v2
+–

+–

R1 R2

R3

+

−

vo

Figure P 4.3-8

P 4.3-9 Determine the values of the node voltages of the

circuit shown in Figure P 4.3-9.

v1 v4

v2

v3

20 Ω

8 Ω

40 Ω

12 Ω

5 V

1.25 A 15 V
+–

+–

Figure P 4.3-9

P 4.3-10 Figure P 4.3-10 shows a measurement made in the

laboratory. Your lab partner forgot to record the values of R1,

R2, and R3. He thinks that the two resistors were 10-kV resistors

and the other was a 5-kV resistor. Is this possible? Which

resistor is the 5-kV resistor?

Voltmeter

6 V12 V

4   .   5  0

R1

R2

R3
+–+–

Figure P 4.3-10

P 4.3-11 Determine the values of the power supplied by each

of the sources in the circuit shown in Figure P 4.3-11.

3 Ω

4 Ω

15 V+– + –
10 V

8 Ω

6 Ω

Figure P 4.3-11

P 4.3-12 Determine the values of the node voltages of the

circuit shown in Figure P 4.3-12.

8 V

0.25 A12 V

4 Ω

5 Ω

10 Ω

v2v1

v3

+–

+–

Figure P 4.3-12

P 4.3-13 Determine the values of node voltages v1 and v2
in the circuit shown in Figure P 4.3-13.
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100 mA +–60 V

v2
v1

80 Ω

65 Ω

50 Ω

75 Ω

Figure P 4.3-13

P 4.3-14 The voltage source in the circuit shown in Figure

P 4.3-14 supplies 83.802W. The current source supplies

17.572W. Determine the values of the node voltages v1 and v2.

250 mA +–80 V

v2
v1

50 Ω

20 Ω
i3

i1

i6

R4

R2

Figure P 4.3-14

Section 4.4 Node Voltage Analysis with Dependent

Sources

P 4.4-1 The voltages va, vb, and vc in Figure P 4.4-1 are the

node voltages corresponding to nodes a, b, and c. The values of

these voltages are:

va ¼ 8:667 V; vb ¼ 2 V; and vc ¼ 10 V

Determine the value of A, the gain of the dependent source.

vc

+

–
va

+

–

vb

+

–

1 Ω 2 Ω

2 Ω2 Ω

a b

c

3 A

i1

Ai1

i2

Figure P 4.4-1

P 4.4-2 Find ib for the circuit shown in Figure P 4.4-2.

Answer: ib ¼ "12 mA

+

–

1 kΩ 3 kΩ

2 kΩ6 V 4va
+–

+
–

va

ib

Figure P 4.4-2

P 4.4-3 Determine the node voltage vb for the circuit of

Figure P 4.4-3.

Answer: vb ¼ 1.5 V
ia

+

–

4 kΩ

2 kΩ2 V 5ia
+– vb

Figure P 4.4-3

P 4.4-4 The circled numbers in Figure P 4.4-4 are node

numbers. The node voltages of this circuit are v1 ¼ 10 V;
v2 ¼ 14 V; and v3 ¼ 12 V.

(a) Determine the value of the current ib.

(b) Determine the value of r, the gain of the CCVS.

Answers: (a) "2 A (b) 4 V/A

+– +–

ia

ib

ria
2 Ω 

4 Ω 

10 V
12 V

3

2

1 +–

A1 2

Figure P 4.4-4

P 4.4-5 Determine the value of the current ix in the circuit

of Figure P 4.4-5.

Answer: ix ¼ 2.4 A

+–
ix

3ix
2 Ω 

2 Ω 12 V

+ –

1 A

Figure P 4.4-5
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P 4.4-6 The encircled numbers in the circuit shown in Figure

P 4.4-6 are node numbers. Determine the value of the power

supplied by the CCVS.

5 Ω

20 Ω12 V+–

1 2 3

+
–

ia
40 ia

10 Ω

Figure P 4.4-6

P 4.4-7 The encircled numbers in the circuit shown in

Figure P 4.4-7 are node numbers. The corresponding node

voltages are:

v1 ¼ 9:74 V and v2 ¼ 6:09 V

Determine the values of the gains of the dependent sources, r

and g.

+ –

+– 12 V +

+ –

–

8 Ω

8 Ω 8 Ω

vb+ –

g vb

rib
1 2

ib

Figure P 4.4-7

P 4.4-8 Determine the value of the power supplied by the

dependent source in Figure P 4.4-8.

4 Ω

12 Ω 8 Ω

16 Ωia

8 ia

10 V
+–+ –

Figure P 4.4-8

P 4.4-9 The node voltages in the circuit shown in Figure

P 4.4-9 are

v1 ¼ 4 V; v2 ¼ 0 V; and v3 ¼ "6 V

Determine the values of the resistance R and of the gain b of the

CCCS.

10 Ω

40 Ω 20 Ω

10 V

bia R

v1

v2

ia

v3

–+

Figure P 4.4-9

P 4.4-10 The value of the node voltage at node b in the

circuit shown in Figure P 4.4-10 is vb ¼ 18 V.

(a) Determine the value of A, the gain of the dependent source.

(b) Determine the power supplied by the dependent source.

100 Ω

200 Ω+
–9 V

b

A va

va+ −

vb

+

−

Figure P 4.4-10

/P 4.4-11 Determine the power supplied by the dependent

source in the circuit shown in Figure P 4.4-11.

vx

+

–

+– +–

4 A

10 V20 V

10 Ω

x

2 Ω 

0.1vx

Figure P 4.4-11

/P 4.4-12 Determine values of the node voltages v1, v2, v3, v4,

and v5 in the circuit shown in Figure P 4.4-12.

4ix

8 Ω1 A

2 Ω

2 Ω

8 V

16 V

3 Ω 

6 Ω 

+ –

+ –

+
–

 ix

v3

v2

v4
v5

v1

Figure P 4.4-12

/P 4.4-13 Determine values of the node voltages v1, v2, v3, v4,

and v5 in the circuit shown in Figure P 4.4-13.

4ix 8 Ω2 A

2 Ω

10 Ω

16 V

8 V

5 Ω 

4 Ω 

+ –

+ –
+
–

ix

v3

v2

v4

 v1

v5

Figure P 4.4-13
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P 4.4-14 The voltages v1, v2, v3, and v4 are the node voltages

corresponding to nodes 1, 2, 3, and 4 in Figure P 4.4-14.

Determine the values of these node voltages.

+ –

+–

ib
3ib

5va

va

+

–

3

4

2

1

10 Ω

20 Ω

30 Ω25 V 2 A

Figure P 4.4-14

P 4.4-15 The voltages v1, v2, v3, and v4 in Figure P 4.4-15 are

the node voltages corresponding to nodes 1, 2, 3, and 4. The

values of these voltages are

v1 ¼ 10 V; v2 ¼ 75 V; v3 ¼ "15 V; and v4 ¼ 22:5 V

Determine the values of the gains of the dependent sources, A

and B, and of the resistance R1.

+ –

+–

ib

va

+

–

3

4

2

1
50 Ω

20 Ω10 V 2.5 A

Bib

R1

Ava

Figure P 4.4-15

P 4.4-16 The voltages v1, v2, and v3 in Figure P 4.4-16 are the

node voltages corresponding to nodes 1, 2, and 3. The values of

these voltages are

v1 ¼ 12 V; v2 ¼ 21 V; and v3 ¼ "3 V

(a) Determine the values of the resistances R1 and R2.

(b) Determine the power supplied by each source.

+– 12 V

R1

R2

2 A

3

2

1

1.25 A

0.5 A

Figure P 4.4-16

P 4.4-17 The voltages v1, v2, and v3 in Figure P 4.4-17 are

the node voltages corresponding to nodes 1, 2, and 3. The

values of these voltages are

v1 ¼ 12 V; v2 ¼ 9:6 V; and v3 ¼ "1:33 V

(a) Determine the values of the resistances R1 and R2.

(b) Determine the power supplied by each source.

+– 12 V

R1

R2

2 A

8 Ω

3

2

1

4 Ω

Figure P 4.4-17

P 4.4-18 The voltages v2, v3, and v4 for the circuit shown in

Figure P 4.4-18 are:

v2 ¼ 16 V; v3 ¼ 8 V; and v4 ¼ 6 V

Determine the values of the following:

(a) The gain, A, of the VCVS

(b) The resistance R5

(c) The currents ib and ic
(d) The power received by resistor R4

v4

+

+ –

–
v3

+

–

15 Ω

12 Ω

va

R5

Ava

R4 = 15 Ω

ic

v2

+

–

12 Ω40 V–+

+ –
ib

Figure P 4.4-18

P 4.4-19 Determine the values of the node voltages v1 and v2
for the circuit shown in Figure P 4.4-19.

v2

v3

4v3

+

+ –

–

4 Ω

6 Ωv1

+

–

28 V–+
5 Ω

3v1

Figure P 4.4-19

P 4.4-20 The encircled numbers in Figure P 4.4-20 are node

numbers. Determine the values of v1, v2, and v3, the node

voltages corresponding to nodes 1, 2, and 3.
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– +va

10 Ω 10 V

30 Ω

–+

– +

–
+

5va

10 V 2 Ω
1 2 3

Figure P 4.4-20

P 4.4-21 Determine the values of the node voltages v1, v2, and

v3 for the circuit shown in Figure P 4.4-21.

v3

+

–

v2

+

–

v1

+

–

2 Ω

ia

4ia
2 Ω

2 Ω2 Ω12 V 1 A–+

+ –

Figure P 4.4-21

P 4.4-22 Determine the values of the node voltages v1, v2, and

v3 for the circuit shown in Figure P 4.4-22.

v3

+

–

v2

+

–

v1

+

–

2 Ω

ia

4ia
2 Ω

2 Ω2 Ω12 V 1 A–+

Figure P 4.4-22

Section 4.5 Mesh Current Analysis with

Independent Voltage Sources

P 4.5-1 Determine the mesh currents i1, i2, and i3 for the

circuit shown in Figure P 4.5-1.

Answers: i1 ¼ 3 A; i2 ¼ 2 A; and i3 ¼ 4 A

+– +–

3 Ω 

6 Ω 15 V

9 Ω 

2 Ω 

21 Vi3i2

i1

Figure P 4.5-1

P 4.5-2 The values of the mesh currents in the circuit shown

in Figure P 4.5-2 are i1 ¼ 2 A; i2 ¼ 3 A; and i3 ¼ 4 A. Deter-

mine thevaluesof the resistanceRandof the voltages v1 and v2of

the voltage sources.

Answers: R ¼ 12V; v1 ¼ "4 V; and v2 ¼ "28 V

+– +–

4 Ω 

8 Ω 

10 Ω 

i3 v2v1 i2

i1

R

Figure P 4.5-2

P 4.5-3 The currents i1 and i2 in Figure P 4.5-3 are the mesh

currents. Determine the value of the resistance R required to

cause va ¼ "6 V.

Answer: R ¼ 4V

+–

+– va

+

–

18 V

4 Ω

3 V

8 Ωi1

R

i2

Figure P 4.5-3

P 4.5-4 Determine the mesh currents ia and ib in the circuit

shown in Figure P 4.5-4.

75 Ω 100 Ω

25 Ω 200 Ω

vc

+

–

+–+–

+–

8 V2 V

4 V

100 Ω

100 Ω250 Ω

ibia

Figure P 4.5-4

P 4.5-5 Find the current i for the circuit of Figure P 4.5-5.

Hint: A short circuit can be treated as a 0-V voltage source.

2 Ω 4 Ω

2 Ω 6 Ω10 V

i

+–

Figure P 4.5-5

P 4.5-6 Simplify the circuit shown in Figure P 4.5-6 by

replacing series and parallel resistors by equivalent resistors.

Next, analyze the simplified circuit by writing and solving

mesh equations.
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(a) Determine the power supplied by each source,

(b) Determine the power absorbed by the 30-V resistor.

100 Ω

60 Ω

40 Ω

300 Ω

8 V

60 Ω

30 Ω

80 Ω 560 Ω

12 V
+–

+–

Figure P 4.5-6

Section 4.6 Mesh Current Analysis with Current

and Voltage Sources

P 4.6-1 Find ib for the circuit shown in Figure P 4.6-1.

Answer: ib ¼ 0:6 A

75 Ω50 Ω

25 Ω50 Ω

10 V+–
ibi1 i20.5 A

Figure P 4.6-1

P 4.6-2 Find vc for the circuit shown in Figure P 4.6-2.

Answer: vc ¼ 15 V

75 Ω 100 Ω

25 Ω 200 Ω

vc

+

–

+–

0.4 A0.25 A

4 V

100 Ω

100 Ω250 Ω 

ibia

Figure P 4.6-2

P 4.6-3 Find v2 for the circuit shown in Figure P 4.6-3.

Answer: v2 ¼ 2 V

20 Ω

30 Ω

60 Ω

30 Ω

10 V
+–

+ –v2

i1 i2 i3

0.5 A

Figure P 4.6-3

P 4.6-4 Find vc for the circuit shown in Figure P 4.6-4.

vc

+

–

+– 9 V

20 mA

100 Ω

100 Ω

250 Ω ibia

Figure P 4.6-4

P 4.6-5 Determine the value of the voltage measured by

the voltmeter in Figure P 4.6-5.

Answer: 8 V

12 V

8 V 2 A

+–

+ –
Voltmeter

6 Ω

3 Ω5 Ω

Figure P 4.6-5

P 4.6-6 Determine the value of the current measured by

the ammeter in Figure P 4.6-6.

Hint: Write and solve a single mesh equation.

Ammeter2 A

3 A

5 Ω 2 Ω

7 Ω 4 Ω

6 Ω

Figure P 4.6-6

P 4.6-7 The mesh currents are labeled in the circuit shown in

Figure P 4.6-7. The values of these mesh currents are:

i1 ¼ "1:1014 A; i2 ¼ 0:8986 A and i3 ¼ "0:2899 A

(a) Determine the values of the resistances R1 and R3.

(b) Determine the value of the current source current.

(c) Determine the value of the power supplied by the 12-V

voltage source.

+– i1 i2Is 24 Ω

R1 R3

i3
+–

+ –
12 V

32 V24 V

Figure P 4.6-7
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P 4.6-8 Determine values of the mesh currents i1, i2, and i3 in

the circuit shown in Figure P 4.6-8.

1 kΩ

4 kΩ

2 kΩ

1 kΩ

7 kΩ

2 mA
3 V

+–
i1

i2

i3

Figure P 4.6-8

P 4.6-9 The mesh currents are labeled in the circuit

shown in Figure P 4.6-9. Determine the value of the mesh

currents i1, and i2.

4 A

12 Ω

8 Ω 5 Ωi2i1

Figure P 4.6-9

P 4.6-10 The mesh currents in the circuit shown in Figure

P 4.6-10 are

i1 ¼ "2:2213 A; i2 ¼ 0:7787 A; and i3 ¼ 0:0770 A

(a) Determine the values of the resistances R1 and R3.

(b) Determine the value of the power supplied by the current

source.

24 V

32 V

Is

R1

R3

20 Ω

50 Ω

i
2

i1

i
3

+–

+–

Figure P 4.6-10

P 4.6-11 Determine the value of the voltage measured by

the voltmeter in Figure P 4.6-11.

Hint: Apply KVL to a supermesh to determine the current in

the 2-V resistor.

Answer: 4=3 V

A9 V
+– 2 Ω

4 Ω 3 Ω
Voltmeter

3 4

Figure P 4.6-11

P 4.6-12 Determine the value of the current measured by

the ammeter in Figure P 4.6-12.

Hint: Apply KVL to a supermesh.

Answer: "0.333 A

3 A15 V
+–

6 Ω 3 Ω
Ammeter

Figure P 4.6-12

P 4.6-13 Determine the values of the mesh currents i1, i2,

and i3 and the output voltage v0 in the circuit shown in Figure

P 4.6-13.

i1

24 Ω

+–15 V

2.4 A

i2

i3

1.2 A

18 Ω

16 Ω

12 Ω

+

–
vo

Figure P 4.6-13

P 4.6-14 Determine the values of the power supplied by the

sources in the circuit shown in Figure P 4.6-14.

25 Ω 3 A5 A
15 Ω

10 Ω

Figure P 4.6-14

P 4.6-15 Determine the values of the resistance R and of the

power supplied by the 6-A current source in the circuit shown

in Figure P 4.6-15.
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2.5 A

1 A

6 A5 Ω

5 Ω

10 Ω

4 Ω

R

Figure P 4.6-15

Section 4.7 Mesh Current Analysis with

Dependent Sources

P 4.7-1 Find v2 for the circuit shown in Figure P 4.7-1.

Answer: v2 ¼ 10 V

v2+ –

50 Ω

100 Ω 10 V0.04v2
+–i1

Figure P 4.7-1

P 4.7-2 Determine the values of the power supplied by the

voltage source and by the CCCS in the circuit shown in Figure

P 4.7-2.

2 kΩ2 V
4 kΩ

ia

5ia
+–

Figure P 4.7-2

P 4.7-3 Find vo for the circuit shown in Figure P 4.7-3.

Answer: vo ¼ 2.5 V

60 mA 100 Ω 250 Ω

vo = 50ib

 ib
ia

+ –

Figure P 4.7-3

P 4.7-4 Determine the mesh current ia for the circuit shown in

Figure P 4.7-4.

Answer: ia ¼ "24 mA

vb

+

–

6 mA 100 Ω 250 Ω

3vb

ia

+ –

Figure P 4.7-4

P 4.7-5 Although scientists continue to debate exactly why

and how it works, the process of using electricity to aid in the

repair and growth of bones—which has been used mainly with

fractures—may soon be extended to an array of other problems,

ranging from osteoporosis and osteoarthritis to spinal fusions

and skin ulcers.

An electric current is applied to bone fractures that have

not healed in the normal period of time. The process seeks to

imitate natural electrical forces within the body. It takes only

a small amount of electric stimulation to accelerate bone

recovery. The direct current method uses an electrode that

is implanted at the bone. This method has a success rate

approaching 80 percent.

The implant is shown in Figure P 4.7-5a, and the circuit

model is shown in Figure P 4.7-5b. Find the energy delivered to

the cathode during a 24-hour period. The cathode is represented

by the dependent voltage source and the 100-kV resistor.

3 V 20 kΩ 100 kΩ

10 kΩ

Micro Connector

5000i1

 i1

+ –

+–

(b)

(a)

Generator

Anode

Cathode

Figure P 4.7-5 (a) Electric aid to bone repair. (b) Circuit model.

P 4.7-6 Determine the value of the power supplied by the

VCCS in the circuit shown in Figure P 4.7-6.

2 Ω2 A
20 Ω

8 Ω

+ –va

va
2

Figure P 4.7-6
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P 4.7-7 The currents i1, i2, and i3 are the mesh currents of the

circuit shown in Figure P 4.7-7. Determine the values of i1, i2,

and i3.

10 V

5 Ω20 Ω

10 Ω 3 va

20 ib

ib

+

−

va

i3

i2

i1

+–+–

+
–

Figure P 4.7-7

P 4.7-8 Determine the value of the power supplied by the

dependent source in Figure P 4.7-8.

10 V

40 Ω

80 Ω20 Ω

60 Ω
2 ia

ia

+–

Figure P 4.7-8

P 4.7-9 Determine the value of the resistance R in the

circuit shown in Figure P 4.7-9.

0.5 mA25 V

5 kΩ 10 kΩ

4 ib
ib R+–

Figure P 4.7-9

P 4.7-10 The circuit shown inFigureP4.7-10 is the small signal

model of an amplifier. The input to the amplifier is the voltage

source voltage vs. The output of the amplifier is the voltage vo.

(a) The ratio of the output to the input, vo=vs, is called the gain of

the amplifier. Determine the gain of the amplifier.

(b) The ratio of the current of the input source to the input

voltage ib=vs is called the input resistance of the amplifier.

Determine the input resistance.

1 kΩ

2 kΩ

3 kΩ

300 Ω

40 ibib

vs

+

−

vo
+–

Figure P 4.7-10

P 4.7-11 Determine the values of the mesh currents of the

circuit shown in Figure P 4.7-11.

4ix

ix

b

a c

0.5 A

5 Ω

10 Ω25 Ω

20 Ω

Figure P 4.7-11

P 4.7-12 The currents i1, i2, and i3 are the mesh currents

corresponding to meshes 1, 2, and 3 in Figure P 4.7-12.

Determine the values of these mesh currents.

+ –

+–

ib
3ib

5va

va

+

–

30 Ω

20 Ω

10 Ω25 V 2 Ai2i1

i3

Figure P 4.7-12

P 4.7-13 The currents i1, i2, and i3 are the mesh currents

corresponding to meshes 1, 2, and 3 in Figure P 4.7-13. The

values of these currents are

i1 ¼ "1:375 A; i2 ¼ "2:5 A and i3 ¼ "3:25 A

Determine the values of the gains of the dependent sources, A

and B.

+ –

+–

ib

va

+

–

20 Ω

50 Ω

20 Ω10 V 2.5 Ai2i1

i3

Ava

Bib

Figure P 4.7-13

P 4.7-14 Determine the current i in the circuit shown in Figure

P 4.7-14.
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Answer: i ¼ 3 A

12 A 28 Ω

4 Ω

2i

8 Ω

i

Figure P 4.7-14

P 4.7-15 Determine the values of the mesh currents i1 and i2
for the circuit shown in Figure P 4.7-15.

2 Ω

ia

4ia
2 Ω

2 Ω2 Ω12 V 1 A–+ i2i1

Figure P 4.7-15

P 4.7-16 Determine the values of the mesh currents i1 and i2
for the circuit shown in Figure P 4.7-16.

2 Ω

ia

4ia
2 Ω

2 Ω2 Ω12 V 1 A–+ i2i1

+ –

Figure P 4.7-16

Section 4.8 The Node Voltage Method and Mesh

Current Method Compared

P 4.8-1 The circuit shown in Figure P 4.8-1 has two inputs, vs
and is, and one output, vo. The output is related to the inputs by

the equation

vo ¼ ais þ bvs

where a and b are constants to be determined. Determine the

values a and b by (a) writing and solving mesh equations and

(b) writing and solving node equations.

vs

is

120 Ω 30 Ω

32 Ω96 Ω

+

−

vo

+ –

Figure P 4.8-1

P 4.8-2 Determine the power supplied by the dependent

source in the circuit shown in Figure P 4.8-2 by writing and

solving (a) node equations and (b) mesh equations.

120 V

ia = 0.2 va

50 Ω 10 Ω

+ −va

+ –

Figure P 4.8-2

Section 4.9 Circuit Analysis Using MATLAB

P 4.9-1 The encircled numbers in the circuit shown Figure

P 4.9-1 are node numbers. Determine the values of the corre-

sponding node voltages v1, v2, and v3.

3 A

4 Ω1 25 Ω

2 Ω

3

10 Ω5 A

Figure P 4.9-1

P 4.9-2 Determine the values of the node voltages v1 and v2 in

the circuit shown in Figure P 4.9-2.

8 V

40 Ω50 Ω

20 Ω

10 Ω15 V

v2

+–+–

25 Ω

v1

Figure P 4.9-2

P 4.9-3 Determine the values of the node voltages v1, v2, and

v3 in the circuit shown in Figure P 4.9-3.

10 V

40 Ω20 Ω

50 Ω

25 Ω15 V

v2

+–+–

25 Ω

v1

10 Ω

v3

Figure P 4.9-3
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P 4.9-4 Determine the node voltages v1 and v2 for the circuit

shown in Figure P 4.9-4.

v1

+

–

v2

+

–

+–

25 Ω 14 Ω

8 Ω 9 Ω

2 A

24 V

Figure P 4.9-4

P 4.9-5 Determine the mesh currents i1 and i2 for the circuit

shown in Figure P 4.9-5.

+–

25 � 14 �

8 � 9 �

2 A

24 V

i1 i2

Figure P 4.9-5

P 4.9-6 Represent the circuit shown in Figure P 4.9-6 by the

matrix equation

a 11 a 12

a 21 a 22

+ ,

v 1

v 2

+ ,

¼
"40

"228

+ ,

Determine the values of the coefficients a11, a12, a21, and a22.

v1

+

–

v2

+

–

+–

10 �

22 �

10 � 19 �

0.4 A

10 V

Figure P 4.9-6

P 4.9-7 Represent the circuit shown in Figure P 4.9-7 by the

matrix equation

a 11 a 12

a 21 a 22

+ ,

i 1
i 2

+ ,

¼
4

10

+ ,

Determine the values of the coefficients a11, a12, a21, and a22.

+–

10 �

22 �

10 � 19 �

0.4 A

10 V

i1 i2

Figure P 4.9-7

P 4.9-8 Determine the values of the power supplied by each of

the sources for the circuit shown in Figure P 4.9-8.

40 Ω

24 V +–2.4 A40 Ω

5 Ω 5 Ω

Figure P 4.9-8

P 4.9-9 The mesh currents are labeled in the circuit shown

in Figure P 4.9-9. Determine the value of the mesh currents i1
and i2.

8 Ω i24 Ω

8 Ω

+
–i1

4 Ω

+ –
6 V

+ –
15 V

4 Ω

5 i1

i1

Figure P 4.9-9

P 4.9-10 The encircled numbers in the circuit shown in Figure

P 4.9-10 are node numbers. Determine the values of the

corresponding node voltages v1 and v2.

10 Ω 4 Ω2.5 A

2 Ω

1.5 v1
v1

+

–

10 Ω5 A

1 2

Figure P 4.9-10
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Section 4.11 How CanWe Check . . . ?

P 4.11-1 Computer analysis of the circuit shown in Figure

P 4.11-1 indicates that the node voltages are va ¼ 5:2 V;
vb ¼ "4:8 V; and vc ¼ 3:0 V. Is this analysis correct?

Hint: Use the node voltages to calculate all the element

currents. Check to see that KCL is satisfied at each node.

10 V

A

a

3 Ω2 Ω

4 Ω 5 Ω

+ –

b
c

1 2

Figure P 4.11-1

P 4.11-2 An old lab report asserts that the node voltages of

the circuit of Figure P 4.11-2 are va ¼ 4 V; vb ¼ 20 V;
and vc ¼ 12 V. Are these correct?

2 Ω2 Ω

4 Ω

2 Ω

2ix

ix

b

a c

2 A

Figure P 4.11-2

P 4.11-3 Your lab partner forgot to record the values of R1,

R2, and R3. He thinks that two of the resistors in Figure

P 4.11-3 had values of 10 kV and that the other had a

value of 5 kV. Is this possible? Which resistor is the 5-kV

resistor?

7 . 5 0

R1 R2

R312 V 6 V
+– +–

Voltmeter

Figure P 4.11-3

P 4.11-4 Computer analysis of the circuit shown in Figure

P 4.11-4 indicates that the mesh currents are i1 ¼ 2 A;
i2 ¼ 4 A, and i3 ¼ 3 A. Verify that this analysis is correct.

Hint: Use the mesh currents to calculate the element voltages.

Verify that KVL is satisfied for each mesh.

+– +–

10 Ω 

8 Ω 

4 Ω 

12 Ω 

i3i2

i1

4 V28 V

Figure P 4.11-4

166 4. Methods of Analysis of Resistive Circuits



PSpice Problems

SP 4-1 Use PSpice to determine the node voltages of the

circuit shown in Figure SP 4-1.

4 i1

i1

a

2 Ω 2 Ω

1 Ω 2 Ω

3 A

b

c

Figure SP 4-1

SP 4-2 Use PSpice to determine the mesh currents of the

circuit shown in Figure SP 4-2 when R ¼ 4 V.

va

+

–
3 V

18 V

4 Ω

8 Ω

i2i1

+–
+–

R

Figure SP 4-2

SP 4-3 The voltages va, vb, vc, and vd in Figure SP 4-3 are the

node voltages corresponding to nodes a, b, c, and d. The

current i is the current in a short circuit connected between

nodes b and c. Use PSpice to determine the values of va, vb, vc,

and vd and of i.

vd

+

–

vc

+

–

4 k Ω

4 k Ω

1 mA

8 Vi

vb

+

–

va

+

–

2 mA12 V+–

+ –
a b c d

Figure SP 4-3

SP 4-4 Determine the current i shown in Figure SP 4-4.

Answer: i ¼ 0.56 A

1 Ω2 Ω

1 Ω 1 Ω

3 Ω

3 Ω 2 Ω

2 Ω

+–

+–

4 V

4 V

i

Figure SP 4-4

Design Problems

DP 4-1 An electronic instrument incorporates a 15-V power

supply. A digital display is added that requires a 5-V power

supply. Unfortunately, the project is over budget, and you are

instructed to use the existing power supply. Using a voltage

divider, as shown in Figure DP 4-1, you are able to obtain 5 V.

The specification sheet for the digital display shows that the

display will operate properly over a supply voltage range of 4.8 V

to 5.4 V. Furthermore, the display will draw 300 mA (I) when the

display is active and 100 mA when quiescent (no activity).

(a) Select values of R1 and R2 so that the display will be supplied

with 4.8 V to 5.4 V under all conditions of current I.

(b) Calculate the maximum power dissipated by each resistor, R1

and R2, and the maximum current drawn from the 15-V supply.

(c) Is the use of the voltage divider a good engineering solution?

If not, why? What problems might arise?

15-volt
power
supply

Digital
display

R1

I

R2

+

–

Figure DP 4-1

DP 4-2 For the circuit shown in Figure DP 4-2, it is desired to

set the voltage at node a equal to 0 V control an electric motor.

Select voltages v1 and v2 to achieve va ¼ 0 V when v1 and v2 are

less than 20 V and greater than zero and R ¼ 2 V.
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v2+–

a

+–

R

v1

R R

+–
8 V

R

R

Figure DP 4-2

DP 4-3 Awiring circuit for a special lamp in a home is shown in

Figure DP 4-3. The lamp has a resistance of 2V, and the designer

selects R ¼ 100V. The lamp will light when I 0 50 mA but will

burn out when I > 75  mA.

(a) Determine the current in the lamp and whether it will light

for R ¼ 100V.

(b) Select R so that the lamp will light but will not burn out if R

changes by 110 percent because of temperature changes in

the home.

5 V
+– I

2 Ω
300 Ω

50 Ω R

Lamp

Figure DP 4-3 A lamp circuit.

D P 4-4 To control a device using the circuit shown in Figure

DP 4-4, it is necessary that vab ¼ 10 V. Select the resistors when

it is required that all resistors be greater than 1 V and

R3 þ R4 ¼ 20 V.

R2+–25 V R4

R3

5 Ω

10 Ω

R1

a

b

Figure DP 4-4

DP 4-5 The current i shown in the circuit of Figure DP 4-5 is

used to measure the stress between two sides of an earth fault

line. Voltage v1 is obtained from one side of the fault, and v2 is

obtained from the other side of the fault. Select the resistances

R1, R2, and R3 so that the magnitude of the current i will remain

in the range between 0.5 mA and 2 mA when v1 and v2 may each

vary independently between þ1 V and þ2 V 1 V 2 vn 2 2 Vð Þ.

v1
+–

i

R3 v2
+–

R2R1

Figure DP 4-5 A circuit for earth fault-line stress measurement.
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CHAPTER 5 Circuit Theorems

I N T H I S C H A P T E R

5.1 Introduction

5.2 Source

Transformations

5.3 Superposition

5.4 Th!evenin’s Theorem

5.5 Norton’s Equivalent

Circuit

5.6 Maximum Power

Transfer

5.7 Using MATLAB

to Determine

the Th!evenin

Equivalent

Circuit

5.8 Using PSpice to

Determine the

Th!evenin Equivalent

Circuit

5.9 How Can We

Check . . . ?

5.10 DESIGN

EXAMPLE—Strain

Gauge Bridge

5.11 Summary

Problems

PSpice Problems

Design Problems

5.1 I n t r o d u c t i o n

In this chapter, we consider five circuit theorems:

! A source transformation allows us to replace a voltage source and series resistor by a current source

and parallel resistor. Doing so does not change the element current or voltage of any other element of

the circuit.

! Superposition says that the response of a linear circuit to several inputs working together is equal

to the sum of the responses to each of the inputs working separately.

! Th!evenin’s theorem allows us to replace part of a circuit by a voltage source and series resistor.

Doing so does not change the element current or voltage of any element in the rest of the circuit.

! Norton’s theorem allows us to replace part of a circuit by a current source and parallel resistor.

Doing so does not change the element current or voltage of any element in the rest of the circuit.

! The maximum power transfer theorem describes the condition under which one circuit transfers as

much power as possible to another circuit.

Each of these circuit theorems can be thought of as a shortcut, a way to reduce the complexity of an

electric circuit so that it can be analyzed more easily. More important, these theorems provide insight

into the nature of linear electric circuits.

5.2 S o u r c e T r a n s f o rm a t i o n s

The ideal voltage source is the simplest model of a voltage source, but occasionally we need a more

accurate model. Figure 5.2-1a shows a more accurate but more complicated model of a voltage

source. The circuit shown in Figure 5.2-1 is sometimes called a nonideal voltage source.

(The voltage of a practical voltage source decreases as the voltage source supplies more power.

The nonideal voltage source models this behavior, whereas the ideal voltage source does not. The

nonideal voltage source is a more accurate model of a practical voltage source than the ideal voltage

source, but it is also more complicated. We will usually use ideal voltage sources to model practical

voltage sources but will occasionally need to use a nonideal voltage source.) Figure 5.2-1b shows a

nonideal current source. It is a more accurate but more complicated model of a practical current

source.
169



Under certain conditions (Rp ¼ Rs and vs ¼ Rsis), the nonideal voltage source and the nonideal

current source are equivalent to each other. Figure 5.2-1 illustrates the meaning of “equivalent.” In

Figure 5.2-1c, a nonideal voltage source is connected to circuit B. In Figure 5.2-1d, a nonideal

current source is connected to that same circuit B. Perhaps Figure 5.2-1d was obtained from Figure

5.2-1c, by replacing the nonideal voltage source with a nonideal current source. Replacing the

nonideal voltage source by the equivalent nonideal current source does not change the voltage or

current of any element in circuit B. That means that if you looked at a list of the values of the currents

and voltages of all the circuit elements in circuit B, you could not tell whether circuit B was

connected to a nonideal voltage source or to an equivalent nonideal current source. Similarly, we can

imagine that Figure 5.2-1c was obtained from Figure 5.2-1d by replacing the nonideal current source

with a nonideal voltage source. Replacing the nonideal current source by the equivalent nonideal

voltage source does not change the voltage or current of any element in circuit B. The process of

transforming Figure 5.2-1c into Figure 5.2-1d, or vice versa, is called a source transformation.

To see why the source transformation works, we will perform an experiment using the test circuit

shown in Figure 5.2-2. This test circuit contains a device called an “operational amplifier.” We will

learn about operational amplifiers in Chapter 6, so we aren’t ready to analyze this circuit yet. Instead,

imagine building the circuit and making some measurements to learn how it works.

Consider the following experiment. We connect a resistor having resistance R to the terminals of

the test circuit as shown in Figure 5.2-2 and measure the resistor voltage v and resistor current i. Next,

we change the resistor and measure the new values of the resistor voltage and current. After some trial

and error, we collect the following data:

R, kV 0 1 2 5 10 20 50 1

i, mA 3 2.667 2.4 1.846 1.33 0.857 0.414 0

v, V 0 2.667 4.8 9.231 13.33 17.143 20.69 24

Two of these data points deserve special attention. The resistor acts like an open circuit when R = 1 so

we connect an open circuit across the terminals of the test circuit in this case. As expected, i = 0. The

resistor voltage is referred to as the “open circuit voltage,” denoted as voc. We have measured

voc = 24 V. The resistor acts like a short circuit when R = 0, so we connect a short circuit across the

terminals of the test circuit. As expected, v = 0. The resistor current is referred to as the “short-circuit

current,” denoted as isc. We have measured isc = 3 mA.

Circuit B+– vs

Rs a

b

+– vs

Rs a

b

(a)

(c)

Circuit Bis

is

a

b

(d)

Rp

a

b

(b)

Rp

FIGURE 5.2-1 (a) A nonideal

voltage source. (b) A nonideal

current source. (c) Circuit B

connected to the nonideal voltage

source. (d) Circuit B connected to

the nonideal current source.
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Figure 5.2-3 shows a plot of the data. All of the data points lie on the straight line segment that

connects the points (i sc,0) and (0,voc)! The slope of the straight line is

slope ¼ $
v oc

i sc

This slope has units of V. It’s convenient to define Rt as

R t ¼
v oc

i sc
ð5:2-1Þ

The equation of the straight line representing our data is

v ¼ $
v oc

i sc

! "

i þ v oc

or

v ¼ $R t i þ v oc ð5:2-2Þ

Our experiment has worked quite well. Equation 5.2-2 is a concise description of the test circuit.

Now we are ready for a surprise. Consider the circuit shown in Figure 5.2-4

R

R t

+– v

+

−

voc

i

Test Circuit #2
FIGURE 5.2-4 Th!evenin equivalent circuit.

i, mA

 v, V

 isc = 3

voc = 24

FIGURE 5.2-3 A plot of the data collected from

the test circuit.

10 kΩ

40 kΩ

40 kΩ

10 kΩ

6 V

A Test Circuit

R
+– v

+

–

i

–
+

FIGURE 5.2-2 A test circuit.
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The test circuit in Figure 5.2-4 consists of a voltage source connected in series with a resistor.

The voltage of the voltage source in the second test circuit is equal to the open circuit voltage

of the first test circuit. Also, the resistance of the resistor in the second test circuit is the parameter Rt

from the first test circuit, given by Eq. 5.2-1.

Apply KVL in Figure 5.2-4 to get

R t i þ v $ v oc ¼ 0 ) v ¼ $R t i þ v oc ð5:2-3Þ

Eq. 5.2-3 is the same equation as Eq. 5.2-2. The circuits in Figures 5.2-2 and 5.2-4 are both described by

the same equation! There’s more. Consider the circuit shown in Figure 5.2-5. The test circuit in

Figure 5.2-5 consists of a current source connected in parallel with a resistor. The current of the current

source in the third test circuit is equal to the short-circuit current of the first test circuit. Also, the

resistance of the resistor in the third test circuit is the parameter Rt from the first test circuit, again given

by Eq. 5.2-1.

v

+

−

RR t isc

i

Test Circuit #3
FIGURE 5.2-5 Norton equivalent circuit.

Apply KCL in Figure 5.2-5 to get

i sc ¼
v

R t

þ i ¼ 0 ) v ¼ $R t i þ R t i sc ð5:2-4Þ

Equations 5.2-2, 5.2-3, and 5.2-4 are identical. The three test circuits are each represented by the

equation that describes our data. Any one of them could have generated our data! It is in this sense that

we say that the second and third test circuits are equivalent to the first test circuit.

The second and third test circuits have names. They are called the “Th!evenin equivalent circuit”

and “Norton equivalent circuit” of the first test circuit. Also, the parameter Rt given by Eq. 5.2-1 is

called the “Th!evenin resistance” of the first test circuit.

The Th!evenin and Norton equivalent circuits are equivalent to each other. The source transfor-

mation, described earlier in this section and summarized in Figure 5.2-6, may be preformed by

replacing a Th!evenin equivalent circuit with a Norton equivalent circuit or vice versa.

i pvs

a a

b b

+–

Rs

Rp

and Rp = Rsi p = vs
Rs

vs = Rp i p  and Rs = Rp
FIGURE 5.2-6 Source Transformations.
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E X A M P L E 5 . 2 - 1 Source Transformations

First,determinethevaluesof ipandRp thatcausethepartofthecircuitconnectedtothe2-kV resistorinFigure 5.2-7b tobe

equivalent to part of the circuit connected to the 2-kV resistor in Figure 5.2-7a. Next, determine the values of va and vb.

i p

a a

b b
+– Rp12 V

6 kΩ

2 kΩ v a

+

–
2 kΩ v b

+

–

(a) (b)
FIGURE 5.2-7 The circuit considered in

Example 5.2-1.

Solution
We can use a source transformation to determine the required values of ip and Rp. Referring to Figure 5.2-6 we get

i p ¼
12

6000
¼ 0:002 A ¼ 2 mA and R p ¼ 6 kV

Using voltage division in Figure 5.2-7a, we calculate

v a ¼
2000

2000þ 6000
12ð Þ ¼ 3 V

The voltage across the parallel resistors in Figure 5.2-7b is given by

v b ¼
2000R p

2000þ R p

i p ¼
2000 6000ð Þ

2000þ 6000
0:002ð Þ ¼ 1500 0:002ð Þ ¼ 3 V

As expected, the source transformation did not change the value of the voltage across the 2-kV resistor.

E X A M P L E 5 . 2 - 2 Source Transformations

First, determine the values of ip and Rp that cause the part of the circuit connected to the 2-kV resistor in

Figure 5.2-8b to be equivalent to part of the circuit connected to the 2-kV resistor in Figure 5.2-8a. Next, determine

the values of va and vb.

i p

a a

b b
+– Rp12 V

6 kΩ

2 kΩ v a

+

–
2 kΩ v b

+

–

(a) (b)
FIGURE 5.2-8 The circuit considered in

Example 5.2-2.

Solution
This example is very similar to the previous example. The difference between these examples is the polarity of the

voltage source in part (a) of the figures. Reversing both the polarity of voltage source and the sign of the source

voltage produces an equivalent circuit. Consequently, we can redraw Figure 5.2-8 as shown in Figure 5.2-9.
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i p

a a

b b

+– Rp−12 V

6 kΩ

2 kΩ v a

+

–
2 kΩ v b

+

–

(a) (b)

FIGURE 5.2-9

The circuit from Figure 5.2-8 after changing

the polarity of the voltage source.

Now we are ready use a source transformation to determine the required values of ip and Rp. Comparing Figure 5.2-

9 to Figure 5.2-6, we write

i p ¼
$12

6000
¼ $0:002 A ¼ $2 mA and R p ¼ 6 kV

Using voltage division in Figure 5.2-9a, we calculate

v a ¼ $
2000

2000þ 6000
12ð Þ ¼ $3 V

The voltage across the parallel resistors in Figure 5.2-9b is given by

v b ¼
2000R p

2000þ R p

i p ¼
2000 6000ð Þ

2000þ 6000
$0:002ð Þ ¼ 1500 $0:002ð Þ ¼ $3 V

As before, the source transformation did not change the value of the voltage across the 2-kV resistor.

E X A M P L E 5 . 2 - 3 Application of Source Transformations

Use a source transformation to determine a relationship between the resistance R and the resistor current i in

Figure 5.2-10.

+–12 V

4 kΩ

i

R2 mA

FIGURE 5.2-10 The circuit considered in Example 5.2-3.

Solution
We can use a source transformation to replace the 12-volt source in series with the 4-kV resistor by the parallel

combination of a current source and resistor. The resulting circuit is shown in Figure 5.2-11.

i

R2 mA3 mA 2 kΩ

FIGURE 5.2-11 The circuit from Figure 5.2-10 after a

source transformation.
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EXERCISE 5.2-1 Determine values of R and is so that the circuits shown in Figures E 5.2-1a,b

are equivalent to each other due to a source transformation.

Answer: R ¼ 10 V and is ¼ 1.2 A

EXERCISE 5.2-2 Determine values of R and is so that the circuits shown in Figures E 5.2-2a,b

are equivalent to each other due to a source transformation.

Hint: Notice that the polarity of the voltage source in Figure E 5.2-2a is not the same as in Figure

E 5.2-1a.

Answer: R ¼ 10 V and is ¼ $1.2 A

EXERCISE 5.2-3 Determine values of R and vs so that the circuits shown in Figures E 5.2-3a,b

are equivalent to each other due to a source transformation.

Rvs 3 A

8 Ω

+–

(a) (b) FIGURE E 5.2-3

Answer: R ¼ 8 V and vs ¼ 24 V

Now we will replace the parallel current sources by an equivalent current source. The resulting circuit is

shown Figure 5.2-12. Using current division in Figure 5.2-12 gives

i ¼
2000

2000þ R
0:001ð Þ ¼

2

2000þ R
ð5:2-5Þ

The source transformation did not change the value of the current in resistor R and neither did replacing parallel

current sources by an equivalent current source. The relationship between resistance R and the resistor current i is

the same in Figure 5.2-10 as it is in Figure 5.2-12. Consequently, Equation 5.2-5 describes the relationship between

resistance R and the resistor current i in Figure 5.2-11.

R

is12 V 10 Ω
+–

(a) (b)

FIGURE E 5.2-1

R

is12 V 10 Ω+–

(a) (b)

FIGURE E 5.2-2

Try it 

yourself 

in WileyPLUS

Try it 

yourself 

in WileyPLUS

Try it 

yourself 

in WileyPLUS

i

R1 mA 2 kΩ

FIGURE E 5.2-12 The circuit from Figure 5.2-11 replacing parallel current sources

by an equivalent current source.
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EXERCISE 5.2-4 Determine values of R and vs so that the circuits shown in Figures E 5.2-4a,b

are equivalent to each other due to a source transformation.

Rvs 3 A

8 Ω

+–

(a) (b) FIGURE E 5.2-4

Hint: Notice that the reference direction of the current source in Figure E 5.2-4b is not the same as in

Figure E 5.2-3b.

Answer: R ¼ 8 V and vs ¼ $24 V

5.3 S u p e r p o s i t i o n

The output of a linear circuit can be expressed as a linear combination of its inputs. For example,

consider any circuit having the following three properties:

1. The circuit consists entirely of resistors and dependent and independent sources.

2. The circuit inputs are the voltages of all the independent voltage sources and the currents of all the

independent current sources.

3. The output is the voltage or current of any element of the circuit.

Such a circuit is a linear circuit. Consequently, the circuit output can be expressed as a linear

combination of the circuit inputs. For example,

vo ¼ a1v1 þ a2v2 þ ) ) ) þ anvn ð5:3-1Þ

where v0 is the output of the circuit (it could be a current instead of a voltage) and v1; v2; : : : ; vn are the

inputs to the circuit (any or all the inputs could be currents instead of voltages). The coefficients

a1; a2; : : : ; an of the linear combination are real constants called gains.

Next, consider what would happen if we set all but one input to zero. Let voi denote output when

all inputs except the ith input have been set to zero. For example, suppose we set v2; v3; : : : ; vn to zero.

Then

vo1 ¼ a1v1 ð5:3-2Þ

We can interpret vo1 ¼ a1v1 as the circuit output due to input v1acting separately. In contrast, the vo in

Eq 5.3-1 is the circuit output due to all the inputs working together. We now have the following

important interpretation of Eq. 5.3-1:

The output of a linear circuit due to several inputs working together is equal to the sum of the

outputs due to each input working separately.

The inputs to our circuit are voltages of independent voltage sources and the currents of

independent current sources. When we set all but one input to zero, the other inputs become 0-V

Try it 

yourself 

in WileyPLUS
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voltage sources and 0-A current sources. Because 0-V voltage sources are equivalent to short

circuits and 0-A current sources are equivalent to open circuits, we replace the sources

corresponding to the other inputs by short or open circuits.

Equation 5.3-2 suggests a method for determining the values of the coefficients a1; a2; : : : ; an of

the linear combination. For example, to determine a1, set v2; v3; : : : ; vn to zero. Then, dividing both

sides of Eq. 5.5-2 by v1, we get

a1 ¼
vo1

v1

The other gains are determined similarly.

E X A M P L E 5 . 3 - 1 Superposit ion

The circuit shown in Figure 5.3-1 has one output, vo, and three inputs, v1, i2, and v3. (As expected, the inputs are

voltages of independent voltage sources and the currents of independent current sources.) Express the output as a

linear combination of the inputs.

Solution
Let’s analyze the circuit using node equations. Label the node voltage at the top node of the current source and

identify the supernode corresponding to the horizontal voltage source as shown in Figure 5.3-2.

Apply KCL to the supernode to get

v1 $ v3 þ voð Þ

40
þ i2 ¼

vo

10

Multiply both sides of this equation by 40 to eliminate the fractions. Then we have

v1 $ v3 þ voð Þ þ 40i2 ¼ 4vo ) v1 þ 40i2 $ v3 ¼ 5vo

Dividing both sides by 5 expresses the output as a linear combination of the inputs:

vo ¼
v1

5
þ 8i2 $

v3

5

Also, the coefficients of the linear combination can now be determined to be

a1 ¼
vo1

v1
¼

1

5
V/V; a2 ¼

vo2

i2
¼ 8V/A; and a3 ¼

vo3

v3
¼ $

1

5
V/V

Alternate Solution

Figure 5.3-3 shows the circuit from Figure 5.3-1 when i2 ¼ 0 A and v3 ¼ 0 V. (A zero current source is equivalent to

an open circuit, and a zero voltage source is equivalent to a short circuit.)

v1 i2
+–

+ –

vo

v3

+

–

10 Ω

40 Ω

FIGURE 5.3-1 The linear circuit for Example 5.3-1.

v1 i2
+–

+ –

vo

v3
v3 + vo

+

–

10 Ω

40 Ω

FIGURE 5.3-2 A supernode.
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v1
+– vo1

+

–

10 Ω

40 Ω

Zero Voltage Score

Zero Current Source FIGURE 5.3-3 Output due to the first input.

Using voltage division

vo1 ¼
10

40þ 10
v1 ¼

1

5
v1

In other words,

a1 ¼
vo1

v1
¼

1

5
V/V

Next, Figure 5.3-4 shows the circuit when v1 ¼ 0 V and v3 ¼ 0 V. The resistors are connected in parallel. Applying

Ohm’s law to the equivalent resistance gives

vo2 ¼
40* 10

40þ 10
i2 ¼ 8i2

In other words,

a2 ¼
vo2

i2
¼ 8V/A

Finally, Figure 5.3-5 shows the circuit when v1 ¼ 0 V and i2 ¼ 0 A. Using voltage division,

vo3 ¼
10

40þ 10
$v3ð Þ ¼ $

1

5
v3

In other words,

a3 ¼
vo3

v3
¼ $

1

5
V/V

Now the output can be expressed as a linear combination of the inputs

vo ¼ a1v1 þ a2i2 þ a3v3 ¼
1

5
v1 þ 8i2 þ $

1

5

! "

v3

as before.

i2 vo2

+

–

10 Ω

40 Ω

Zero Voltage Score

Another Zero Voltage Source

FIGURE 5.3-4 Output due to the second input.

vo3

v3

+

–

10 Ω

40 Ω
Zero Voltage

Score

Zero Current Source

+ –

FIGURE 5.3-5 Output due to the third input.
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E X A M P L E 5 . 3 - 2 Superposit ion

Find the current i for the circuit of Figure 5.3-6a.

i1

i

(b) (c)

(a)

3i1 3i2

3i

i2

v3

+

–

+

–

+

–

+

–
+
–

+
–

3 Ω 2 Ω 3 Ω

3 Ω

2 Ω

2 Ω

24 V

24 V

7 A

a

7 A

FIGURE 5.3-6 (a) The circuit for Example 5.3-2. (b) The independent voltage source acting alone. (c) The independent current

source acting alone.

Solution
Independent sources provide the inputs to a circuit. The circuit in Figure 5.3-6a has two inputs: the voltage of

the independent voltage source and the current of the independent current source. The current, i, caused by the

two sources acting together is equal to the sum of the currents caused by each independent source acting separately.

Step 1: Figure 5.3-6b shows the circuit used to calculate the current caused by the independent voltage

source acting alone. The current source current is set to zero for this calculation. (A zero current source is equivalent

to an open circuit, so the current source has been replaced by an open circuit.) The current due to the voltage source

alone has been labeled as i1 in Figure 5.3-6b.

Apply Kirchhoff’s voltage law to the loop in Figure 5.3-6b to get

$24þ 3þ 2ð Þi1 þ 3i1 þ 0 ) i1 ¼ 3 A

(Notice that we did not set the dependent source to zero. The inputs to a circuit are provided by the independent

sources, not by the dependent sources. When we find the response to one input acting alone, we set the other

inputs to zero. Hence, we set the other independent sources to zero, but there is no reason to set the dependent

source to zero.)

Step 2: Figure 5.3-6c shows the circuit used to calculate the current caused by the current source acting alone.

The voltage of the independent voltage is set to zero for this calculation. (A zero voltage source is equivalent to a

short circuit, so the independent voltage source has been replaced by a short circuit.) The current due to the voltage

source alone has been labeled as i2 in Figure 5.3-6c.

First, express the controlling current of the dependent source in terms of the node voltage, va, using

Ohm’s law:

i2 ¼ $
va

3
) va ¼ $3i2
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5.4 T h !ev e n i n ’ s T h e o r em

In this section, we introduce the Th!evenin equivalent circuit, based on a theorem developed by M. L.

Th!evenin, a French engineer, who first published the principle in 1883. Th!evenin, who is credited with

the theorem, probably based his work on earlier work by Hermann von Helmholtz (see

Figure 5.4-1).

Figure 5.4-2 illustrates the use of the Th!evenin equivalent circuit. In Figure 5.4-2a,

a circuit is partitioned into two parts—circuit A and circuit B—that are connected at a single

pair of terminals. (This is the only connection between circuits A and B. In particular, if

the overall circuit contains a dependent source, then either both parts of that dependent

source must be in circuit A or both parts must be in circuit B.) In Figure 5.4-2b, circuit A is

replaced by its Th!evenin equivalent circuit, which consists of an ideal voltage source in series

with a resistor. Replacing circuit A by its Th!evenin equivalent circuit does not change the

voltageorcurrentofanyelement incircuitB.Thismeans that ifyoulookedata listof thevalues

of the currents and voltages of all the circuit elements in circuit B, you could not tell whether

circuit B was connected to circuit A or connected to its Th!evenin equivalent circuit.

Finding the Th!evenin equivalent circuit of circuit A involves three parameters: the

open-circuit voltage, voc, the short-circuit current, isc, and the Th!evenin resistance, Rt.

Figure 5.4-3 illustrates the meaning of these three parameters. In Figure 5.4-3a, an open

circuit is connected across the terminals of circuit A. The voltage across that open circuit is

the open-circuit voltage, voc. In Figure 5.4-3b, a short circuit is connected across the

terminals of circuit A. The current in that short circuit is the short-circuit current, isc.

Figure 5.4-3c indicates that the Th!evenin resistance, Rt, is the equivalent resistance of circuit A+.

Circuit A+ is formed from circuit A by replacing all the independent voltage sources by short circuits

and replacing all the independent current sources by open circuits. (Dependent current and voltage

sources are not replaced with open circuits or short circuits.) Frequently, the Th!evenin resistance, Rt,

can be determined by repeatedly replacing series or parallel resistors by equivalent resistors.

Sometimes, a more formal method is required. Figure 5.4-4 illustrates a formal method for determining

the value of the Th!evenin resistance. A current source having current it is connected across the terminals

of circuit A+. The voltage, vt, across the current source is calculated or measured. The Th!evenin

Next, apply Kirchhoff’s current law at node a to get

i2 þ 7 ¼
va $ 3i2

2
) i2 þ 7 ¼

$3i2 $ 3i2

2
) i2 ¼ $

7

4
A

Step 3: The current, i, caused by the two independent sources acting together is equal to the sum of the

currents, i1 and i2, caused by each source acting separately:

i ¼ i1 þ i2 ¼ 3$
7

4
¼

5

4
A

FIGURE 5.4-1 Hermann

von Helmholtz (1821–1894),

who is often credited with

the basic work leading to

Th!evenin’s theorem.

SSPL via Getty Images

Circuit BCircuit A

a

b

a

b

(a)

Circuit B+– voc

Rt

(b)

FIGURE 5.4-2 (a) A circuit partitioned into two parts: circuit A

and circuit B. (b) Replacing circuit A by its Th!evenin equivalent

circuit.

Circuit A

a

b

(a)

+

–

voc

Rt

Circuit A

a

b

(b)

Circuit A*

a

b

(c)

isc

FIGURE 5.4-3 The Th!evenin equivalent circuit involves three

parameters: (a) the open-circuit voltage, voc, (b) the short-circuit

current, isc, and (c) the Th!evenin resistance, Rt.
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resistance is determined from the values of it and vt, using

Rt ¼
vt

it
ð5:4-1Þ

The open-circuit voltage, voc, the short-circuit current, isc, and the Th!evenin resistance, Rt, are

related by the equation

voc ¼ Rtisc ð5:4-2Þ

Consequently, the Th!evenin resistance can be calculated from the open-circuit voltage and the short-

circuit current.

In summary, the Th!evenin equivalent circuit for circuit A consists of an ideal voltage source,

having voltage voc, in series with a resistor, having resistance Rt. Replacing circuit A by its Th!evenin

equivalent circuit does not change the voltage or current of any element in circuit B.

E X A M P L E 5 . 4 - 1 Th!evenin Equivalent Circuit

Determine the Th!evenin equivalent circuit for the circuit shown in Figure 5.4-5.

+–

50 �

200 �125 V 2 A

a

b FIGURE 5.4-5 The circuit considered in Example 5.4-1.

First Solution
Referring to Figure 5.4-2, we see that we can draw a Th!evenin equivalent circuit once we have found the open-

circuit voltage voc and Th!evenin resistance, Rt. Figure 5.4-3 shows how to determine the open-circuit voltage, the

Th!evenin resistance, and also the short-circuit current isc. After we determine the values of voc, Rt, and isc we will

use Eq. 5.4-2 to check that our values are correct.

To determine the open-circuit voltage of the circuit shown in Figure 5.4-5, we connect an open

circuit between terminals a and b as shown in Figure 5.4-6a. As the name suggests, the voltage across that

open circuit is the open-circuit voltage, voc. After taking node b in Figure 5.4-6a to be the reference node, we see

that the node voltage at node a is equal to voc. Applying KCL at node a, we obtain the node equation

Rt

Circuit A*

a

b

(a)

Circuit A*

a

b

(b)

vt it

+

–
FIGURE 5.4-4 (a) The Th!evenin resistance,

Rt, and (b) a method for measuring or

calculating the Th!evenin resistance, Rt.

Try it 
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125$ v oc

50
¼ 2þ

v oc

200

Solving for voc gives voc¼ 20 V

To determine the short-circuit current of the circuit shown in Figure 5.4-5, we connect a short circuit between

terminals a and b as shown in Figure 5.4-6b. The current in that short circuit is isc. Due to the short circuit, the

voltage across the 200-V resistor is 0 V. By Ohm’s law, the current in the 200-V resistor is 0 A as shown in

Figure 5.4-6b. Applying KVL to the loop consisting of the voltage source, 50-V resistor, and short circuit, we see

that the voltage across the 50-V resistor is 125 V, also as shown in Figure 5.4-6b. Finally, apply KCL at node a in

Figure 5.4-6b to get

125

50
¼ 2þ 0þ i sc

Solving for isc gives isc¼ 0.5 A

To determine the Th!evenin resistance of the circuit shown in Figure 5.4-5, we set the voltage of the

independent voltage source to zero and the current of the independent current source to zero. (Recall that a zero-volt

voltage source is equivalent to a short circuit and a zero-amp current source is equivalent to an open circuit.) Rt is

the equivalent resistance connected to terminals a-b as shown in Figure 5.4-6c.

R t ¼ 50jj200 ¼
50 200ð Þ

50þ 200
¼ 40 V

Our values of voc, Rt, and isc satisfy Eq. 5.4-2, so we’re confident that they are correct. Finally, the Th!evenin

equivalent circuit is shown in Figure 5.4-6d.

+–

40 �

20 V

a

b
(d)

+–

50 �

200 �125 V 2 A

a

b

isc

50 �

200 �

a

b
R t

(a) (b)

(c)

+–

50 �

200 �125 V 2 A

a

b

+

–
voc

voc

125 V+ – 0 A

FIGURE 5.4-6 Determining the (a) open-circuit voltage, (b) short-circuit current, and (c) Th!evenin resistance of the circuit in

Figure 5.4-5. (d) The Th!evenin equivalent of the circuit in Figure 5.4-5.

Notice the important role of the terminals a-b in this problem. Those terminals are used to identify voc in

Figure 5.4-6a, isc in Figure 5.4-6b, and Rt in Figure 5.4-6c. Importantly, the Th!evenin equivalent circuit in

Figure 5.4-6d is connected to the same pair of terminals as the original circuit in Figure 5.4-5. Finally, notice that

the orientation of voc is the same, + near terminal a, in Figures 5.4-6a and d.
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Second Solution
Often we can simplify a circuit using source transformations and equivalent circuits. In this solution we will

transform a circuit into an equivalent circuit repeatedly. We will start at the left side of the circuit in Figure 5.4-5,

away from terminals a-b. If it is possible to continue these transformations until the equivalent circuit consists of the

series connection of a voltage source and a resistor, connected between terminals a-b, then that series circuit is the

Th!evenin equivalent circuit. Figure 5.4-7 illustrates this procedure.

The circuit in Figure 5.4-6 contains a voltage source connected in series with a 50-V resistor. Using a source

transformation, these circuit elements are replaced by the parallel connection of a 2.5-A current source and 50-V

resistor in Figure 5.4-7a. The circuit in Figure 5.4-7a contains both parallel current sources and parallel resistors. In

Figure 5.4-7b the parallel current sources are replaced by an equivalent current source and the parallel resistors are

replaced by an equivalent resistor. A final source transformation converts the parallel connection of a current source

and resistor in Figure 5.4-7b to the series connection of a voltage source and resistor in Figure 5.4-7c. We recognize

Figure 5.4-7c as a Th!evenin circuit that is equivalent to the circuit shown in Figure 5.4-5 and conclude that

Figure 5.4-7c is the Th!evenin equivalent of the circuit shown in Figure 5.4-5.

+

50 Ω 200 Ω2.5 A 2 A 40 Ω0.5 A

a

b

a

b

(a ) (b )

–

40 Ω

20 V

a

b

(c )

FIGURE 5.4-7 Using source transformations and equivalent circuits to determine the Th!evenin equivalent circuit of the circuit shown

in Figure 5.4-5.

E X A M P L E 5 . 4 - 2 Th!evenin Equivalent Circuit of a Circuit

Containing a Dependent Source

Determine the Th!evenin equivalent circuit for the circuit shown in Figure 5.4-8.

40 �

12 V
a

b

i a
+–

10 �

5 �

4.5 i a

FIGURE 5.4-8 The circuit considered in Example 5.4-2.

Solution
We will determine the values of voc, Rt, and isc and use Eq. 5.4-2 to check that our values are correct.

To determine the open-circuit voltage of the circuit shown in Figure 5.4-8, we connect an open circuit

between terminals a and b and label the voltage across that open circuit as voc. Figure 5.4-9 shows the resulting

circuit after using KCL to label the element currents.

Try it 

yourself 
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0 A

+

–
voc40 �

12 V

a

b

i a
+–

10 �
5 �

4.5 i a

i a

3.5 i a

+

–
voc

FIGURE 5.4-9 The circuit used to find the open-circuit voltage.

The open circuit causes the current in the 5-V resistor to be zero. The voltage across that resistor is also zero, so the

voltage across the 40-V resistor is voc as labeled in Figure 5.4-9.

Using Ohm’s law i a ¼
v oc

40

Applying KVL to the loop consisting the 12-V source, 10-V resistor, and 40-V resistor gives

0 ¼ $12þ voc $ 10(3:5ia)

Solving these equations for voc gives voc ¼ 96 V

To determine the short-circuit current of the circuit shown in Figure 5.4-8, we connect a short circuit between

terminals a and b and label the current across that short circuit as isc. Figure 5.4-10 shows the resulting circuit after

using KCL to label the element currents.

isc40 �
12 V

a

b

i a

+–

10 �

5 �

4.5 i a

i a + isc

i b

FIGURE 5.4-10 The circuit used to find the short-circuit current.

Applying KVL to the loop consisting of the 5-V and 40-V resistors gives

5 i sc $ 40 i a ¼ 0 ) i a ¼
i sc

8

Apply KCL at the top node of the 10-V resistor to write

4:5 i a ¼ i b þ i a þ i scð Þ ) i b ¼ 3:5 i a $ i sc ¼ $
9

16
i sc

Apply KVL to the loop consisting of the voltage source and the 5-V and 10-V resistors to write

$12þ 5 i sc $ 10 $
9

16
i sc

! "

¼ 0

Solving this equation for isc gives i sc ¼
12

5þ 90
16

¼ 1:1294 A

Referring to Figure 5.4-4, we’ll determine the Th!evenin resistance of the circuit by replacing the independent

voltage source by a short circuit and connecting a current source to terminal a-b as shown in Figure 5.4-11. (Circuit

A* in Figure 5.4-4 is obtained from Circuit A by replacing the independent voltage sources by short circuits and the

independent current sources by open circuits.)
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40 �

a

b

i a
10 �

5 �

4.5 i a i t

+

–
v t

i t − ia

i b

FIGURE 5.4-11 The circuit used to find the Th!evenin resistance.

Apply KCL at the top node of the 10-V resistor to write

4:5 i a þ i t $ i að Þ ¼ i b ) i b ¼ 3:5 i a þ i t

Applying KVL to the loop consisting of the 10-V and 40-V resistors gives

40 i a ¼ 10 i b ¼ 10 3:5 i a þ i tð Þ ) i a ¼ 2 i t

Applying KVL to the loop consisting of the independent current source and the 10-V and 5-V resistors gives

v t ¼ 5 i t þ 10 i b ¼ 5 i t þ 10 3:5 i a þ i tð Þ ¼ 15 i t þ 35 i a ¼ 15 i t þ 35 2 i tð Þ ¼ 85 i t

The Th!evenin resistance is R t ¼
v t

i t
¼ 85 V

Our values of voc, Rt, and isc satisfy Eq. 5.4-2, so we’re confident that they are correct. Finally, the Th!evenin

equivalent circuit is shown in Figure 5.4-12.

+–

85 �

96 V

a

b
FIGURE 5.4-12 The Th!evenin equivalent circuit

for the circuit shown in Figure 5.4-8.

E X A M P L E 5 . 4 - 3 An Application of the

Th!evenin Equivalent Circuit

Consider the circuit shown in Figure 5.4-13.

(a) Determine the current, i, when R ¼ 2 V.

(b) Determine the value of the resistance R required to cause i = 5 A.

(c) Determine the value of the resistance R required to cause i = 8 A.

v

+

–

+– 20 Ω

5 Ω 4 Ω

60 V
R

i

FIGURE 5.4-13 The circuit considered in Example 5.4-3.
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Solution
The circuit shown in Figure 5.4-13 is an example of the situation shown in Figure 5.4-2a in which Circuit B is the

resistor R and Circuit A is the part of the circuit shown in Figure 5.4-13 that is connected to resistor R. Replacing

the part of the circuit that is connected to resistor R by its Th!evenin equivalent circuit will not change the value

of the current in resistor R.

In Figure 5.4-14 source transformations and equivalent resistances are used to determine the Th!evenin

equivalent of the part of the circuit that is connected to resistor R. That equivalent circuit is shown in Figure 5.4-14e.

In Figure 5.4-15 the part of the circuit that is connected to resistor R has been replaced by its Th!evenin equivalent

circuit. We readily determine that

i ¼
48

8þ R
ð5:4-3Þ

in Figure 5.4-15. Replacing the part of the circuit that is connected to resistor R by its Th!evenin equivalent circuit

did not change the current in resistor R. Consequently, Eq. 5.4-3 also describes the relationship between i and R in

Figure 5.4-13. We can now easily answer questions (a), (b) and (c).

(a) When R ¼ 2 V the resistor current is i ¼ 48
8þ2

¼ 4:8 A.

(b) To cause i = 5 A requires R ¼ 48
i
$ 8 ¼ 48

5
$ 8 ¼ 1:6 V.

(c) To cause i = 8 A requires R ¼ 48
i
$ 8 ¼ 48

8
$ 8 ¼ $2 V.

The answer in part (c) is probably not acceptable because we expect 0<R<1. Using Eq. 5.4-3 shows that when

0<R<1 the circuit in Figure 5.4-13 can only produce currents in the range 0< i< 6 A. The current specified in

(c) is outside of this range and cannot be obtained using a positive resistance R.

+– 20 Ω

5 Ω 4 Ω

60 V 20 Ω

4 Ω

12 A 5 Ω

4 Ω

4 Ω

12 A +–

4 Ω 4 Ω

48 V +–

8 Ω

48 V

(a) (b)

(c) (d) (e)

FIGURE 5.4-14 Determining the Th!evenin equivalent circuit using source transformations and equivalent resistance.

+–

8 Ω

48 V v

+

–
R

i

FIGURE 5.4-15 The circuit obtained by replacing part of the circuit in Figure 5.4-13 by its Thévenin equivalent circuit.
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A laboratory procedure for determining the Th!evenin equivalent of a black box circuit

(see Figure 5.4-16a) is to measure i and v for two or more values of vs and a fixed value of R. For

the circuit of Figure 5.4-16b, we replace the test circuit with its Th!evenin equivalent, obtaining

v ¼ voc þ iRt ð5:4-4Þ

The procedure is to measure v and i for a fixed R and several values of vs. For example, let R ¼ 10 V and

consider the two measurement results

(1) vs ¼ 49 V: i ¼ 0:5 A; v ¼ 44 V

and (2) vs ¼ 76 V: i ¼ 2 A; v ¼ 56 V

Then we have two simultaneous equations (using Eq. 5.4-4):

44 ¼ voc þ 0:5Rt

56 ¼ voc þ 2Rt

Solving these simultaneous equations, we get Rt ¼ 8 V and voc ¼ 40 V, thus obtaining the Th!evenin

equivalent of the black box circuit.

EXERCISE 5.4-1 Determine values of Rt and voc that cause the circuit shown in Figure

E 5.4-1b to be the Th!evenin equivalent circuit of the circuit in Figure E 5.4-1a.

Answer: Rt ¼ 8 V and voc ¼ 2 V

EXERCISE 5.4-2 Determine values of Rt and voc that cause the circuit shown in Figure

E 5.4-2b to be the Th!evenin equivalent circuit of the circuit in Figure E 5.4-2a.

Answer: Rt ¼ 3 V and voc ¼ $6 V

5.5 No r t o n ’ s E q u i v a l e n t C i r c u i t

An American engineer, E. L. Norton at Bell Telephone Laboratories, proposed an equivalent circuit for

circuit A of Figure 5.4-2, using a current source and an equivalent resistance. The Norton equivalent

circuit is related to the Th!evenin equivalent circuit by a source transformation. In other words, a source

Circuit

under

test

i i

v

+

–

+–

Rt

vs

R

v

+

–

+–+– vsvoc

R

(b)(a)

FIGURE 5.4-16 (a) Circuit under

test with laboratory source vs and

resistor R. (b) Circuit of (a) with

Th!evenin equivalent circuit

replacing the test circuit.

voc

Rt

3 V

3 Ω 6 Ω

6 Ω
+–+–

a

b

a

b

(a) (b)

FIGURE E 5.4-1

voc

Rt

12 V

6 Ω 3 Ω

+–+–

a

b

a

b

+
–

ia

2ia

(a) (b)

FIGURE E 5.4-2

Try it 

yourself 
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Try it 

yourself 

in WileyPLUS
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transformation converts a Th!evenin equivalent circuit into a Norton equivalent circuit or

vice versa. Norton published his method in 1926, 43 years after Th!evenin.

Norton’s theorem may be stated as follows: Given any linear circuit, divide it into two

circuits, A and B. If either A or B contains a dependent source, its controlling variable must be

in the same circuit. Consider circuit A and determine its short-circuit current isc at its terminals.

Then the equivalent circuit of A is a current source isc in parallel with a resistance Rn, where Rn

is the resistance looking into circuit A with all its independent sources deactivated.

We therefore have the Norton circuit for circuit A as shown in Figure 5.5-1. Finding

the Th!evenin equivalent circuit of the circuit in Figure 5.5-1 shows that Rn ¼ Rt and voc ¼
Rtisc. The Norton equivalent is simply the source transformation of the Th!evenin

equivalent.

a

b

Rn

Rn

isc

FIGURE 5.5-1 Norton

equivalent circuit for a linear

circuit A.

E X A M P L E 5 . 5 - 1 Norton Equivalent Circuit

Determine the Norton equivalent circuit for the circuit shown in Figure 5.5-2.

160 �

125 V

2 A

a

b

40 �

+–

FIGURE 5.5-2 The circuit considered

in Example 5.5-1.

Solution
In Figure 5.5-3, source transformations and equivalent circuits are used to simplify the circuit in Figure 5.5-2.

These simplifications continue until the simplified circuit in Figure 5.5-3d consists of a single current source in

parallel with a single resistor. The circuit in Figure 5.5-3d is the Norton equivalent circuit of the circuit in

Figure 5.5-2. Consequently

i sc ¼ 1:125 A and R t ¼ R n ¼ 32 V

160 Ω

32 Ω1.125 A

a

b

a

b

(a ) (b )

40 Ω

80 V

(d )

125 V

160 Ω

a

b

–

40 Ω

45 V

160 Ω1.125 A

a

b

(c )

40 Ω

+–

+
–

+

FIGURE 5.5-3 Using source transformations

and equivalent circuits to determine the Norton

equivalent circuit of the circuit shown in Figure 5.5-2.

Try it 

yourself 

in WileyPLUS
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E X A M P L E 5 . 5 - 2 Norton Equivalent Circuit of a Circuit

Containing a Dependent Source

Determine the Norton equivalent circuit for the circuit shown in Figure 5.5-4.

40 �

12 V
a

b

i a
+–

10 �

5 �

4.5 i a

FIGURE 5.5-4 The circuit considered in Example 5.5-2.

Solution
We determined the Th!evenin equivalent of the circuit shown in Figure 5.5-4 in Example 5.4-2. The procedure used

to determine the Norton equivalent of a circuit is very similar to the procedure used to determine the Th!evenin

equivalent of that circuit. In particular the values of voc, Rt, and isc for the Norton equivalent are determined

in exactly the same way in which they were determined for the Th!evenin equivalent in Example 5.4-2.

Referring to Example 5.4-2 we have

voc ¼ 96 V, isc ¼ 1:1294 A and Rn ¼ Rt ¼ 85 V

Our values of voc, Rt, and isc satisfy Eq. 5.4-2, so we’re confident that they are correct. Finally, the Norton

equivalent circuit is shown in Figure 5.5-5.

85 Ω1.1294 A

a

b
FIGURE 5.5-5 The Norton equivalent circuit for the

circuit shown in Figure 5.5-4.

Try it 

yourself 

in WileyPLUS

E X A M P L E 5 . 5 - 3 An Application of the Norton

Equivalent Circuit

Consider the circuit shown in Figure 5.5-6.

(a) Determine the voltage, v, when R ¼ 24 V.

(b) Determine the value of the resistance R required to cause v = 40 V.

(c) Determine the value of the resistance R required to cause v = 60 V.

v

+

–

+– 20 �

5 � 4 �

60 V
R

i

FIGURE 5.5-6 The circuit considered in Example 5.5-3.

Try it 

yourself 

in WileyPLUS
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EXERCISE 5.5-1 Determine values of Rt and isc that cause the circuit shown in Figure

E 5.5-1b to be the Norton equivalent circuit of the circuit in Figure E 5.5-1a.

isc Rt3 V

3 Ω

6 Ω

6 Ω

+

–

a

b

a

b

(a) (b) FIGURE E 5.5-1

Answer: Rt ¼ 8 V and isc ¼ 0.25 A

Solution
We considered a similar problem in Example 5.4-3. In Example 5.4-3 we replaced the part of the circuit that is

connected to resistor R by its Th!evenin equivalent circuit. In this example we will replace the part of the circuit that

is connected to resistor R by its Norton equivalent circuit. The Norton equivalent circuit can be obtained from the

Th!evenin equivalent using a source transformation. Referring to Figure 5.4-15, we obtain Figure 5.5-7 in which the

part of the circuit that is connected to resistor R has been replaced by its Norton equivalent circuit.

v

+

–
R

i

6 A 8 �
FIGURE 5.5-7 The circuit obtained by replacing part of the circuit in

Figure 5.5-6 by its Norton equivalent circuit.

We readily determine that

v ¼
8R

8þ R
6ð Þ ¼

48R

8þ R
ð5:5-1Þ

in Figure 5.5-7. Replacing the part of the circuit that is connected to resistor R by its Norton equivalent circuit did

not change the current in resistor R. Consequently Eq. 5.5-1 describes the relationship between v and R in

Figure 5.5-6! We can now easily answer questions (a), (b) and (c).

(a) When R ¼ 24 V the resistor current is v ¼ 48 24ð Þ
8þ24

¼ 36 V.

(b) To cause v = 40 V requires R ¼ 8 40ð Þ
48$40

¼ 40 V.

(c) To cause v = 60 V requires R ¼ 8 60ð Þ
48$60

¼ $40 V.

The answer in part (c) is probably not acceptable because we expect 0<R<1. Using Eq. 5.5-1 shows that the

circuit in Figure 5.5-6 can only produce voltage in the range 0< v< 48 V. The voltage specified in (c) is outside of

this range and cannot be obtained using a positive resistance R.

Try it 

yourself 

in WileyPLUS
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5.6 Ma x im um P ow e r T r a n s f e r

Many applications of circuits require the maximum power available from a source to be transferred to a load

resistor RL. Consider the circuit A shown in Figure 5.6-1, terminated with a load RL. As demonstrated in

Section 5.4, circuit A can be reduced to its Th!evenin equivalent, as shown in Figure 5.6-2.

The general problem of power transfer can be discussed in terms of efficiency and effectiveness.

Power utility systems are designed to transport the power to the load with the greatest efficiency by

reducing the losses on the power lines. Thus, the effort is concentrated on reducing Rt, which would

represent the resistance of the source plus the line resistance. Clearly, the idea of using superconducting

lines that would exhibit no line resistance is exciting to power engineers.

In the case of signal transmission, as in the electronics and communications industries, the

problem is to attain the maximum signal strength at the load. Consider the signal received at the antenna

of an FM radio receiver from a distant station. It is the engineer’s goal to design a receiver circuit so that

the maximum power ultimately ends up at the output of the amplifier circuit connected to the antenna of

your FM radio. Thus, we may represent the FM antenna and amplifier by the Th!evenin equivalent

circuit shown in Figure 5.6-2.

Let us consider the general circuit of Figure 5.6-2. We wish to find the value of the load resistance

RL such that maximum power is delivered to it. First, we need to find the power from

p ¼ i 2RL

Because the current i is i ¼
vs

RL þ Rt

we find that the power is p ¼
vs

RL þ Rt

! "2

RL ð5:6-1Þ

Assuming that vs and Rt are fixed for a given source, the maximum power is a function of RL. To find the

value of RL that maximizes the power, we use the differential calculus to find where the derivative

dp=dRL equals zero. Taking the derivative, we obtain

dp

dRL

¼ vs
2 (Rt þ RL)

2 $ 2(Rt þ RL)RL

(RL þ Rt)
4

The derivative is zero when

(Rt þ RL)
2 $ 2(Rt þ RL)RL ¼ 0 ð5:6-2Þ

or (Rt þ RL)(Rt þ RL $ 2RL) ¼ 0 ð5:6-3Þ

Solving Eq. 5.6-3, we obtain

RL ¼ Rt ð5:6-4Þ

RL

Circuit A

FIGURE 5.6-1 Circuit A contains resistors and

independent and dependent sources. The load is the

resistor RL.

Rt

RL

i

+–vs

FIGURE 5.6-2 The Th!evenin equivalent is

substituted for circuit A. Here we use vs for the Th!evenin

source voltage.
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To confirm that Eq. 5.6-4 corresponds to a maximum, it should be shown that d2p=dRL
2 < 0. Therefore,

the maximum power is transferred to the load when RL is equal to the Th!evenin equivalent resistance Rt.

The maximum power, when RL ¼ Rt, is then obtained by substituting RL ¼ Rt in Eq. 5.6-1 to yield

pmax ¼
vs

2Rt

(2Rt)
2
¼

vs
2

4Rt

The power delivered to the load will differ from the maximum attainable as the load resistance RL

departs from RL ¼ Rt. The power attained as RL varies from Rt is portrayed in Figure 5.6-3.

The maximum power transfer theorem states that the maximum power delivered to a load by

a source is attained when the load resistance, RL, is equal to the Th!evenin resistance, Rt, of the

source.

Rt RL

i

is FIGURE 5.6-4 Norton’s equivalent circuit representing

the source circuit and a load resistor RL. Here we use is

as the Norton source current.

We may also use Norton’s equivalent circuit to represent circuit A in Figure 5.6.1. We then have a

circuit with a load resistor RL as shown in Figure 5.6-4. The current i may be obtained from the current

divider principle to yield

i ¼
Rt

Rt þ RL

is

Therefore, the power p is

p ¼ i 2RL ¼
is
2Rt

2RL

(Rt þ RL)
2

ð5:6-5Þ

Using calculus, we can show that the maximum power occurs when

RL ¼ Rt ð5:6-6Þ

Then the maximum power delivered to the load is

pmax ¼
Rtis

2

4
ð5:6-7Þ

0

0.25

0.50

0.75

1.0

0 0.5 1 1.5 2.0

pmax

p

Rt

RL FIGURE 5.6-3 Power actually

attained as RL varies in relation to Rt.
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E X A M P L E 5 . 6 - 1 Maximum Power Transfer

Find the load resistance RL that will result in maximum power delivered

to the load for the circuit of Figure 5.6-5. Also, determine the maximum

power delivered to the load resistor.

Solution
First, we determine the Th!evenin equivalent circuit for the circuit to the

left of terminals a–b. Disconnect the load resistor. The Th!evenin voltage

source voc is

voc ¼
150

180
* 180 ¼ 150 V

The Th!evenin resistance Rt is

Rt ¼
30* 150

30þ 150
¼ 25V

The Th!evenin circuit connected to the load resistor is shown in Figure 5.6-6.

Maximum power transfer is obtained when RL ¼ Rt ¼ 25 V.

Then the maximum power is

pmax ¼
voc

2

4RL

¼
(150)2

4* 25
¼ 225W

30 Ω

150 Ω

a

b

180 V
+– RL

is

FIGURE 5.6-5 Circuit for Example

5.6-1. Resistances in ohms.

25 Ω a

b

150 V
+– RL

i

FIGURE 5.6-6 Th!evenin equivalent

circuit connected to RL for Example

5.6-1.

E X A M P L E 5 . 6 - 2 Maximum Power Transfer

Find the load RL that will result in maximum power delivered to the load of the circuit of Figure 5.6-7a. Also,

determine pmax delivered.

b

a

+–

+–

b

a

+–6 V6 V

6 Ω6 Ω

4 Ω4 Ω

+–

2vab2vab

voc = vab

+

–

RL

b

a

+–voc = 12 V

Rt = 12 Ω

RL

b

a

+–

+–

6 V

6 Ω

4 Ω

2vab = 0

i

isc

(b)(a)

(c) (d)

FIGURE 5.6-7 Determination

of maximum power transfer to

a load RL.
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EXERCISE 5.6-1 Find the maximum power that can be delivered to RL for the circuit of Figure

E 5.6-1, using a Th!evenin equivalent circuit.

3 Ω

6 Ω18 V
+–

2 Ω

RL

FIGURE E 5.6-1

Answer: 9 W when RL ¼ 4 V

5.7 U s i n g MAT LAB t o D e t e rm i n e t h e
T h !ev e n i n E q u i v a l e n t C i r c u i t

MATLAB can be used to reduce the work required to determine the Th!evenin equivalent of a circuit

such as the one shown in Figure 5.7-1a. First, connect a resistor, R, across the terminals of the network,

as shown in Figure 5.7-1b. Next, write node or mesh equations to describe the circuit with the resistor

connected across its terminals. In this case, the circuit in Figure 5.7-1b is represented by the mesh

equations

12 ¼ 28i1 $ 10i2 $ 8i3

12 ¼ $10i1 þ 28i2 $ 8i3

0 ¼ $8i1 $ 8i2 þ (16þ R)i3

ð5:7-1Þ

Solution
We will obtain the Th!evenin equivalent circuit for the part of the circuit to the left of terminals a,b in Figure

5.6-7a. First, we find voc as shown in Figure 5.6-7b. The KVL gives

$6þ 10i $ 2vab ¼ 0

Also, we note that vab ¼ voc ¼ 4i. Therefore,

10i $ 8i ¼ 6

or i ¼ 3 A. Therefore, voc ¼ 4i ¼ 12 V.

To determine the short-circuit current, we add a short circuit as shown in Figure 5.6-7c. The 4-V resistor is

short circuited and can be ignored. Writing KVL, we have

$6þ 6isc ¼ 0

Hence, isc ¼ 1 A.

Therefore, Rt ¼ voc=isc ¼ 12 V. The Th!evenin equivalent circuit is shown in Figure 5.6-7d with the load resistor.

Maximum load power is achieved when RL ¼ Rt ¼ 12V. Then,

pmax ¼
v2oc
4RL

¼
122

4(12)
¼ 3W

Try it 

yourself 

in WileyPLUS
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The current i in the resistor R is equal to the mesh current in the third mesh, that is,

i ¼ i3 ð5:7-2Þ

The mesh equations can be written using matrices such as

28 $10 $8

$10 28 $8

$8 $8 16þ R

2

4

3

5

i1
i2
i3

2

4

3

5 ¼
12

12

0

2

4

3

5 ð5:7-3Þ

Notice that i ¼ i3 in Figure 5.7-1b.

Figure 5.7-2 shows a MATLAB file named ch5ex.m that solves Eq. 5.7-1. Figure 5.7-3 illustrates

the use of this MATLAB file and shows that when R ¼ 6 V, then i ¼ 0.7164 A, and that when R ¼ 12 V,

then i ¼ 0.5106 A.

Next, consider Figure 5.7-4, which shows a resistor R connected across the terminals of a

Th!evenin equivalent circuit. The circuit in Figure 5.7-4 is represented by the mesh equation

V t ¼ Rti þ Ri ð5:7-4Þ

i

8 Ω

8 Ω

10 Ω

12 V

12 V

10 Ω

10 Ω

+–

+– i2

i1

i3 R

8 Ω

8 Ω

10 Ω

12 V

12 V

10 Ω

10 Ω

+–

+–

(b)(a)

FIGURE 5.7-1 The circuit in (b) is obtained by connecting a resistor, R, across the terminals of the circuit in (a).
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FIGURE 5.7-2 MATLAB file used to solve the mesh equation representing the circuit shown in Figure 5.7-1b.
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As a matter of notation, let i ¼ ia when R ¼ Ra. Similarly, let i ¼ ib when R ¼ Rb. Equation 5.7-4

indicates that

V t ¼ Rtia þ Raia
V t ¼ Rtib þ Rbib

ð5:7-5Þ

Equation 5.7-5 can be written using matrices as

Raia
Rbib

' (

¼
1 $ia
1 $ib

' (

V t

Rt

' (

ð5:7-6Þ

Given ia, Ra, ib, and Rb, this matrix equation can be solved for Vt and Rt, the parameters of the Th!evenin

equivalent circuit. Figure 5.7-5 shows a MATLAB file that solves Eq. 5.7-6, using the values ib ¼ 0.7164

A, Rb ¼ 6 V, ia ¼ 0.5106 A, and Ra ¼ 12 V. The resulting values of Vt and Rt are

V t ¼ 10:664 V and Rt ¼ 8:8863V

FIGURE 5.7-3 Computer screen showing the use of MATLAB to analyze the circuit shown in Figure 5.7-1.

+– R

Rt

Vt
i FIGURE 5.7-4 The circuit obtained by

connecting a resistor, R, across the

terminals of a Th!evenin equivalent circuit.
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FIGURE 5.7-5 MATLAB file used to calculate the open-circuit voltage and Th!evenin resistance.

5.8 U s i n g P S p i c e t o D e t e rm i n e t h e T h !ev e n i n
E q u i v a l e n t C i r c u i t

We can use the computer program PSpice to find the Th!evenin or Norton equivalent circuit

for circuits even though they are quite complicated. Figure 5.8-1 illustrates this method. We

calculate the Th!evenin equivalent of the circuit shown in Figure 5.8-1a by calculating its open-circuit

voltage voc and its short-circuit current isc. To do so, we connect a resistor across its terminals

as shown in Figure 5.8-1b. When the resistance of this resistor is infinite, the resistor voltage will

be equal to the open-circuit voltage voc, as shown m Figure 5.8-1b. On the other hand, when

the resistance of this resistor is zero, the resistor current will be equal to the short-circuit current isc,

as shown in Figure 5.8-1c.

We can’t use either infinite or zero resistances in PSpice, so we will approximate the infinite

resistance by a resistance that is several orders of magnitude larger than the largest resistance in circuit

A. We can check whether our resistance is large enough by doubling it and rerunning the PSpice

simulation. If the computed value of voc does not change, our large resistance is effectively infinite.

Similarly, we can approximate a zero resistance by a resistance that is several orders of magnitude

smaller than the smallest resistance in circuit A. Our small resistance is effectively zero when halving it

does not change the computed value of isc.

voc

(a)

R=`Circuit A

a

b

(b)

Circuit A

a

b

+

–

R=O

(c)

Circuit A

a

b

isc

FIGURE 5.8-1 A method for computing the values of voc and isc, using PSpice.
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E X A M P L E 5 . 8 - 1 Using PSpice to find a Th!evenin

Equivalent Circuit

Use PSpice to determine the values of the open-circuit voltage voc and the short-circuit current isc for the circuit

shown in Figure 5.8-2.

Solution
Following our method, we add a resistor across the terminals of the circuit as shown in Figure 5.8-3. Noticing that

the largest resistance in our circuit is 20V and the smallest is 5V, we will determine voc and isc, using

voc - vR when R . 20 V

and vsc - iR ¼
vR

R
when R / 5 V

Using PSpice begins with drawing the circuit in the OrCAD Capture workspace as shown in Figure 5.8-4 (see

Appendix A). The VCVS in Figure 5.8-3 is represented by a PSpice “Part E” in Figure 5.8-4. Figure 5.8-5

illustrates the correspondence between the VCVS and the PSpice “Part E.”

To determine the open circuit voltage, we set the resistance R to a very large value and perform a `Bias Point'

simulation (see Appendix A). Figure 5.8-6 shows the simulation results when R ¼ 20 MV. The voltage across the

resistor R is 33.6 V, so voc ¼ 33.6 V. (Doubling the value of R and rerunning the simulation did not change the value

of the voltage across R, so we are confident that voc ¼ 33.6 V.)

20 Ω5 Ω

20 Ω 5 Ω
8 Ω

24 V 10 v3
+– v3

+

–

+
–

FIGURE 5.8-2 The circuit considered in Example 5.8-1.

20 Ω5 Ω

20 Ω 5 Ω
8 Ω

24 V 10 v3
+– v3

+

–

vR

+

–

+
– R

iR

FIGURE 5.8-3 The circuit from Figure 5.8-2 after adding

a resistor across its terminals.

FIGURE 5.8-4 The circuit from

Figure 5.8-3 drawn in the OrCAD

Capture workspace.
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To determine the short-circuit current, we set the resistance R to a very small value and perform a `Bias Point'

simulation (see Appendix A). Figure 5.8-7 shows the simulation results when R ¼ 1 mV. The voltage across the

resistor R is 12.6 mV. Using Ohm’s law, the value of the short-circuit current is

isc ¼
12:6* 10$3

1* 10$3
¼ 12:6A

(Halving the value of R and rerunning the simulation did not change the value of the voltage across R, so we are

confident that isc ¼ 12.6 A.)

FIGURE 5.8-6 Simulation results for

R ¼ 20 MV.

FIGURE 5.8-7 Simulation results for

R ¼ 1 MV ¼ 0.001V.

1

2

3

1 3

2 4
4

+–vc
kvc

+

–

+

–

+
–

(a) (b)

FIGURE 5.8-5 A VCVS (a) and

the corresponding PSpice “Part E” (b).
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5.9 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For

example, proposed solutions to design problems must be checked to confirm that all of the specifica-

tions have been satisfied. In addition, computer output must be reviewed to guard against data-entry

errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,

occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify

those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of

problem discussed in this chapter.

E X A M P L E 5 . 9 - 1 How Can We Check Th!evenin

Equivalent Circuits?

Suppose that the circuit shown in Figure 5.9-1a was built in the lab, using R ¼ 2 kV, and that the voltage labeled v

was measured to be v ¼ $1.87 V. Next, the resistor labeled R was changed to R ¼ 5 kV, and the voltage v was

measured to be v ¼ $3.0 V. Finally, the resistor was changed to R ¼ 10 kV, and the voltage was measured to be

v ¼ $3.75 V. How can we check that these measurements are consistent?

(b)

R

R Rt

voc

R, k�

+– +–

(a)

v

+

–

v

+

–

v, V

2
5

10

–1.87
–3.0

–3.75

67.5 V −67.5 V

4.788 k� 4.788 k �

2.8728 k �

2.8728 k� 3.83 k �

3.83 k �

+–

FIGURE 5.9-1 (a) A circuit with data obtained by measuring the voltage across the resistor R, and (b) the circuit obtained by

replacing the part of the circuit connected to R by its Th!evenin equivalent circuit.

Solution
Let’s replace the part of the circuit connected to the resistor R by its Th!evenin equivalent circuit. Figure 5.9-1b

shows the resulting circuit. Applying the voltage division principle to the circuit in Figure 5.9-1b gives

v ¼
R

R þ Rt

voc ð5:9-1Þ

When R ¼ 2 kV, then v ¼ $1.87 V, and Eq. 5.9-1 becomes

$1:87 ¼
2000

2000þ Rt

voc ð5:9-2Þ

Similarly, when R ¼ 5 kV, then v ¼ $3.0 V, and Eq. 5.9-1 becomes

$3:0 ¼
5000

5000þ Rt

voc ð5:9-3Þ

Equations 5.9-2 and 5.9-3 constitute a set of two equations in two unknowns, voc and Rt. Solving these equations

gives voc ¼ $5 V and Rt ¼ 3333 V. Substituting these values into Eq. 5.9-1 gives

v ¼
R

R þ 3333
($5) ð5:9-4Þ
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Equation 5.9-4 can be used to predict the voltage that would be measured if R¼ 10 kV. If the value of v obtained using

Eq.5.9-4agreeswith themeasuredvalueofv, then themeasureddataareconsistent.LettingR¼10kV inEq.5.9-4gives

v ¼
10,000

10,000þ 3333
($ 5) ¼ $3:75 V ð5:9-5Þ

Because this value agrees with the measured value of v, the measured data are indeed consistent.

5 . 1 0 D E S I G N E X A M P L E Strain Gauge Bridge

Strain gauges are transducers that measure mechanical strain. Electrically, the strain gauges are resistors. The strain

causes a change in resistance that is proportional to the strain.

Figure 5.10-1 shows four strain gauges connected in a configuration called a bridge. Strain gauge bridges

measure force or pressure (Doebelin, 1966).

R + ∆ RR – ∆ R

R – ∆ RR + ∆ R

50 Ω

100 kΩ

50 mV +
–

vi

b vi

vo

+

–

+ –

Voltmeter

Strain gauge bridge Amplifier

+ –

FIGURE 5.10-1 Design problem involving a strain gauge bridge.

The bridge output is usually a small voltage. In Figure 5.10-1, an amplifier multiplies the bridge output, vi, by

a gain to obtain a larger voltage, vo, which is displayed by the voltmeter.

Describe the Situation and the Assumptions
A strain gauge bridge is used to measure force. The strain gauges have been positioned so that the force will

increase the resistance of two of the strain gauges while, at the same time, decreasing the resistance of the other two

strain gauges.

The strain gauges used in the bridge have nominal resistances of R ¼ 120 V. (The nominal resistance is the

resistance when the strain is zero.) This resistance is expected to increase or decrease by no more than 2 V due to

strain. This means that

$2V 0 DR 0 2V ð5:10-1Þ

The output voltage vo is required to vary from $10 V to þ10 V as DR varies from $2V to 2V.

State the Goal
Determine the amplifier gain b needed to cause vo to be related to DR by

vo ¼ 5
volt

ohm
) DR ð5:10-2Þ

Generate a Plan
Use Th!evenin’s theorem to analyze the circuit shown in Figure 5.10-1 to determine the relationship between vi and

DR. Calculate the amplifier gain needed to satisfy Eq. 5.10-2.
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Act on the Plan
We begin by finding the Th!evenin equivalent of the strain gauge bridge. This requires two calculations: one to find

the open-circuit voltage, vt, and the other to find the Th!evenin resistance Rt. Figure 5.10-2a shows the circuit used to

calculate vt. Begin by finding the currents i1 and i2.

i1 ¼
50 mV

(R $ DR)þ (R þ DR)
¼

50 mV

2R

Similarly i2 ¼
50 mV

R þ DRð Þ þ R $ DRð Þ
¼

50 mV

2R

Then vt ¼ R þ DRð Þi1 $ R $ DRð Þi2

¼ 2DRð Þ
50 mV

2R

¼
DR

R
50 mV ¼

50 mV

120V
DR ¼ 0:4167* 10$3

) *

DR

ð5:10-3Þ

Figure 5.10-2b shows the circuit used to calculate Rt. This figure shows that Rt is composed of a series

connection of two resistances, each of which is a parallel connection of two strain gauge resistances

(a) (b)

R – ∆R

R – ∆R

R + ∆R

R

∆R

R + ∆R

vt =

i1

i2

i = 0

i = 0

50 mV

50 mV+ –

+

–

R – ∆R

R – ∆R

R + ∆R

R

R2 – ∆R2

R + ∆R

Rt =

FIGURE 5.10-2 Calculating (a) the open-circuit voltage, and (b) the Th!evenin resistance of the strain gauge bridge.

Rt ¼
R $ DRð Þ R þ DRð Þ

R $ DRð Þ þ R þ DRð Þ
þ

R þ DRð Þ R $ DRð Þ

R þ DRð Þ þ R $ DRð Þ
¼ 2

R2 $ DR2

2R

Because R is much larger than DR, this equation can be simplified to

Rt ¼ R

In Figure 5.10-3 the strain gauge bridge has been replaced by its Th!evenin equivalent circuit.

This simplification allows us to calculate vi using voltage division

vi ¼
100 kV

100 kVþ Rt

vt ¼ 0:9988vt ¼ 0:4162* 10$3
) *

DR ð5:10-4Þ

Model the voltmeter as an ideal voltmeter. Then the voltmeter current is i ¼ 0 as shown in Figure 5.10-3. Applying

KVL to the right-hand mesh gives

vo þ 50 0ð Þ $ bvi ¼ 0

or vo ¼ bvi ¼ b 0:4162* 10$3
) *

DR ð5:10-5Þ
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Comparing Eq. 5.10-5 to Eq. 5.10-2 shows that the amplifier gain b must satisfy

b 0:4162* 10$3
) *

¼ 5

Hence, the amplifier gain is

b ¼ 12,013

Verify the Proposed Solution
Substituting b ¼ 12,013 into Eq. 5.10-5 gives

vo ¼ 12,013ð Þ 0:4162* 10$3
) *

DR ¼ 4:9998 DR ð5:10-6Þ

which agrees with Eq. 5.10-2.

50 Ω

100 kΩ

+

–

vi

Rt

vt b vi

vo

+

– + –

Voltmeter

+

–

i = 0

FIGURE 5.10-3 Solution to the design problem.

5.11 SUMMARY

Source transformations, summarized in Table 5.11-1, are used to

transform a circuit into an equivalent circuit. A voltage source voc

in series with a resistor Rt can be transformed into a current

source isc¼ voc/Rt and a parallel resistor Rt. Conversely, a current

source isc in parallel with a resistor Rt can be transformed into a

voltage source voc ¼ Rtisc in series with a resistor Rt. The circuits

in Table 5.11-1 are equivalent in the sense that the voltage and

current of all circuit elements in circuit B are unchanged by the

source transformation.

The superposition theorem permits us to determine the

total response of a linear circuit to several independent sources

by finding the response to each independent source separately

and then adding the separate responses algebraically.

Th!evenin and Norton equivalent circuits, summarized in

Table 5.11-2, are used to transform a circuit into a smaller,

yet equivalent, circuit. First the circuit is separated into two

parts, circuit A and circuit B, in Table 5.11-2. Circuit A can

be replaced by either its Th!evenin equivalent circuit or its

Norton equivalent circuit. The circuits in Table 5.11-2 are

equivalent in the sense that the voltage and current of all

circuit elements in circuit B are unchanged by replacing

circuit A with either its Th!evenin equivalent circuit or its

Norton equivalent circuit.

Procedures for calculating the parameters voc, isc, and Rt of

the Th!evenin and Norton equivalent circuits are summarized

in Figures 5.4-3 and 5.4-4.

The goal of many electronic and communications circuits is

to deliver maximum power to a load resistor RL. Maximum

power is attained when RL is set equal to the Th!evenin

resistance Rt of the circuit connected to RL. This results in

maximum power at the load when the series resistance Rt

cannot be reduced.

The computer programs MATLAB and SPICE can be used to

reduce the computational burden of calculating the parame-

ters voc, isc, and Rt of the Th!evenin and Norton equivalent

circuits.

Table 5.11-1 Source Transformations

TH!EVENIN CIRCUIT NORTON CIRCUIT

+–
Circuit

B
+– voc

a

b

Circuit
B

Rt

isc

a

b

Circuit
B

Circuit
B

Rt
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PROBLEMS

Section 5.2 Source Transformations

P 5.2-1 The circuit shown in Figure P 5.2-1a has been

divided into two parts. The circuit shown in Figure P 5.2-1b was

obtained by simplifying the part to the right of the terminals using

source transformations. The part of the circuit to the left of the

terminals was not changed.

(a) Determine the values of Rt and vt in Figure P 5.2-1b.

(b) Determine the values of the current i and the voltage v in

Figure P 5.2-1b. The circuit in Figure P 5.2-1b is equiv-

alent to the circuit in Figure P 5.2-1a. Consequently,

the current i and the voltage v in Figure P 5.2-1a have

the same values as do the current i and the voltage v in

Figure P 5.2-1b.

(c) Determine the value of the current ia in Figure P 5.2-1a.

9 V 0.5 A

i

+–

+–
4 � 2 � 2 V

4 � 2 �

(a)

ia

v

+

–

9 V

i

+–
+
–

4 �

(b)

ia

vt

Rt

v

+

–

Figure P 5.2-1

P 5.2-2 Consider the circuit of Figure P 5.2-2. Find ia by

simplifying the circuit (using source transformations) to a

single-loop circuit so that you need to write only one KVL

equation to find ia.

+–10 V

ia

2 A
6 Ω

3 Ω

8 Ω

4 Ω

Figure P 5.2-2

P 5.2-3 Find vo using source transformations if i ¼ 5=2 A

in the circuit shown in Figure P 5.2-3.

Hint: Reduce the circuit to a single mesh that contains the

voltage source labeled vo.

Answer: vo ¼ 28 V

6 �

20 �

3 � 10 �8 V

16 �

3 A

2 A 12 � 7 �

+ –

+ –
i

v0

Figure P 5.2-3

P 5.2-4 Determine the value of the current ia in the circuit

shown in Figure P 5.2-4.

4 kΩ
10 V

4 kΩ6 kΩ

3 kΩ12 V 6 V4 kΩ

+ –

+– +–
ia

Figure P 5.2-4

Table 5.11-2 Th!evenin and Norton Equivalent Circuits

ORIGINAL CIRCUIT TH!EVENIN CIRCUIT NORTON EQUIVALENT CIRCUIT

a

b

Circuit
B

Circuit
A

+– voc

Rt
a

b

Circuit
B

isc Rt

a

b

Circuit
B

Problem available in WileyPLUS at instructor’s discretion.
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P 5.2-5 Use source transformations to find the current ia in

the circuit shown in Figure P 5.2-5.

Answer: ia ¼ 1 A

6 Ω
6 V

4 A

1 A12 V 3 Ω

+–
+–

ia

Figure P 5.2-5

P 5.2-6 Use source transformations to find the value of the

voltage va in Figure P 5.2-6.

Answer: va ¼ 7 V

+–

+ –

va

+

–

100 Ω

100 Ω 100 Ω 30 mA

8 V

10 V

Figure P 5.2-6

P 5.2-7 Theequivalent circuit inFigureP5.2-7 isobtained from

the original circuit using source transformations and equivalent

resistances. (The lower case letters a and b identify the nodes of

the capacitor in both the original and equivalent circuits.)

Determine the values of Ra, Va, Rb, and Ib in the equivalent circuit

2.2 A 36 V2.5 A
18 �

9 �10 �

18 �

32 V

Ca b

original circuit

+–
+–

+–

equivalent circuit

R a

I bR bVa

Ca b

Figure P 5.2-7

P 5.2-8 The circuit shown in Figure P 5.2-8 contains an

unspecified resistance R.

(a) Determine the value of the current i when R ¼ 4V.

(b) Determine the value of the voltage v when R ¼ 8V.

(c) Determine the value of R that will cause i ¼ 1 A.

(d) Determine the value of R that will cause v ¼ 16 V.

18 Ω

24 Ω

24 Ω

12 Ω12 V 2 A

i R

v

+–

+ –

Figure P 5.2-8

P 5.2-9 Determine the value of the power supplied by the

current source in the circuit shown in Figure P 5.2-9.

15 Ω

24 Ω

12 Ω

25 Ω24 V

32 V

2 A
+–

+–

Figure P 5.2-9

Section 5.3 Superposition

P 5.3-1 The inputs to the circuit shown in Figure P 5.3-1

are the voltage source voltages v1 and v2. The output of the

circuit is the voltage vo. The output is related to the inputs by

vo ¼ av1 þ bv2

where a and b are constants. Determine the values of a and b.

20 Ω 5 Ω

20 Ω
+– +–vo v2v1

+

–

Figure P 5.3-1

P 5.3-2 A particular linear circuit has two inputs, v1 and v2,

and one output, vo. Three measurements are made. The first

measurement shows that the output is vo ¼ 4 V when the inputs

are v1 ¼ 2 V and v2 ¼ 0. The second measurement shows that the

output is vo ¼ 10 V when the inputs are v1 ¼ 0 and v2 ¼$2.5 V.

In the third measurement, the inputs are v1 ¼ 3 V and v2 ¼ 3 V.

What is the value of the output in the third measurement?

P 5.3-3 The circuit shown in Figure P 5.3-3 has two

inputs, vs and is, and one output, io. The output is related to the

inputs by the equation
io ¼ ais þ bvs
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Given the following two facts:

The output is io ¼ 0:45Awhen the inputs are is ¼ 0:25 A
and vs ¼ 15 V

and

The output is io ¼ 0:30Awhen the inputs are is ¼ 0:50 A
and vs ¼ 0 V

Determine the values of the constants a and b and the values of

the resistances are R1 and R2.

Answers:a¼0.6 A/A, b¼0.02 A/V, R1¼ 30V, and R2¼20V.

+– vs is
io

R2

R1

Figure P 5.3-3

P 5.3-4 Use superposition to find v for the circuit of

Figure P 5.3-4.

20 �
15 �6 A9 A10 �

v
+ –

Figure P 5.3-4

P 5.3-5 Determine v(t), the voltage across the vertical resistor

in the circuit in Figure P 5.3-5.

12 cos(5t ) V40 Ω

10 Ω

12 V
+

–
v (t )+– +–

40 Ω

Figure P 5.3-5

P 5.3-6 Use superposition to find i for the circuit of

Figure P 5.3-6.

Answer: i ¼ 3.5 mA

4 k� 15 V

15 mA

12 k� 6 k�30 mA2 k�
i

+ –

Figure P 5.3-6

P 5.3-7 Determine v(t), the voltage across the 40 Ω resistor in

the circuit in Figure P 5.3-7.

1+ sin(5t ) A40 �10 �

12+15cos(8t ) V
+ – +

–
v (t )

Figure P 5.3-7

P 5.3-8 Use superposition to find the value of the current

ix in Figure P 5.3-8.

Answer: ix ¼ 1=6 A

ix

3ix

6 Ω 3 Ω

2 A8 V
+–

+
–

Figure P 5.3-8

*P 5.3-9 The input to the circuit shown in Figure P 5.3-9 is the

voltage source voltage vs. The output is the voltage vo. The

current source current ia is used to adjust the relationship

between the input and output. Design the circuit so that input

and output are related by the equation vo ¼ 2vs þ 9.

ix

A ix

vs ia12 Ω

6 Ω

12 Ω

+

−

vo

+ –

+–

Figure P 5.3-9

Hint: Determine the required values of A and ia.

P 5.3-10 The circuit shown in Figure P 5.3-10 has three

inputs: v1, v2, and i3. The output of the circuit is vo. The output

is related to the inputs by

vo ¼ av1 þ bv2 þ ci3

where a, b, and c are constants. Determine the values of a, b, and c.

i3v1

v2

10 Ω40 Ω

8 Ω

vo
+–

+ –
+

–

Figure P 5.3-10

P 5.3-11 Determine the voltage vo(t) for the circuit shown in

Figure P 5.3-11.
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4 ix

ix

10 Ω

12 cos 2t V

40 Ω 10 Ω2 V 5 Ω vo(t)

+

–

+–
+–

Figure P 5.3-11

P 5.3-12 Determine the value of the voltage vo in the

circuit shown in Figure P 5.3-12.

0.3 A

20 V

96 Ω 32 Ω

30 Ω120 Ω
+
vo

–

+ –

Figure P 5.3-12

P 5.3-13 The input to the circuit shown in Figure P 5.3-13

is the current i1. The output is the voltage vo. The current i2 is

used to adjust the relationship between the input and output.

Determine values of the current i2 and the resistance R, that

cause the output to be related to the input by the equation

vo ¼ $0:5i1 þ 4

i1 i2
8 Ω

2 Ω

8 Ω4 ΩR

a b
vo +–

Figure P 5.3-13

P 5.3-14 Determine values of the current ia and the

resistance R for the circuit shown in Figure P 5.3-14.

7 mA

20 kΩ

8 V

4 kΩ

5 kΩ

ia

R

2 mA

+ –

Figure P 5.3-14

P 5.3-15 The circuit shown in Figure P 5.3-15 has three

inputs: v1, i2, and v3. The output of the circuit is the current io.

The output of the circuit is related to the inputs by

i1 ¼ avo þ bv2 þ ci3

where a, b, and c are constants. Determine the values of

a, b, and c.

20 Ω

12 Ω

10 Ω

40 Ω

v1

v3

i2
io

+–

+–

Figure P 5.3-15

P 5.3-16 Using the superposition principle, find the value

of the current measured by the ammeter in Figure P 5.3-16a.

Hint: Figure P 5.3-16b shows the circuit after the ideal

ammeter has been replaced by the equivalent short circuit

and a label has been added to indicate the current measured

by the ammeter, im.

Answer: im ¼
25

3 þ 2
$

3

2 þ 3
5 ¼ 5 $ 3 ¼ 2 A

5 A

25 V

2 Ω

3 Ω

Ammeter+–

(a)

2 Ω

im5 A

25 V

3 Ω

+–

(b)

Figure P 5.3-16 (a) A circuit containing two independent

sources. (b) The circuit after the ideal ammeter has been replaced

by the equivalent short circuit and a label has been added to

indicate the current measured by the ammeter, im.

Section 5.4 Th!evenin’s Theorem

P 5.4-1 Determine values of Rt and voc that cause the

circuit shown in Figure P 5.4-1b to be the Th!evenin equivalent

circuit of the circuit in Figure P 5.4-1a.

Hint: Use source transformations and equivalent resistances

to reduce the circuit in Figure P 5.4-1a until it is the circuit in

Figure P 5.4-1b.
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Answer: Rt ¼ 5V and voc ¼ 2 V

3 A voc

Rt

12 V

3 Ω 3 Ω

6 Ω
+–+–

a

b

a

b

(a) (b)

Figure P 5.4-1

P 5.4-2 The circuit shown in Figure P 5.4-2b is the Th!evenin

equivalent circuit of the circuit shown in Figure P 5.4-2a.

Find the value of the open-circuit voltage voc and Th!evenin

resistance Rt.

Answer: voc ¼ $12 V and Rt ¼ 16V

+–

(a) (b)

10 Ω

40 Ω15 V

8 Ω

+– voc

Rt

Figure P 5.4-2

P 5.4-3 The circuit shown in Figure P 5.4-3b is the Th!evenin

equivalent circuit of the circuit shown in Figure P 5.4-3a. Find the

value of the open-circuit voltage voc and Th!evenin resistance Rt.

Answer: voc ¼ 2 V and Rt ¼ 4V

+–

(a) (b)

6 Ω

6 Ω

6 Ω

12 V

1 A
+– voc

Rt

Figure P 5.4-3

P 5.4-4 Find the Th!evenin equivalent circuit for the circuit

shown in Figure P 5.4-4.

+–

12 Ω

6 Ω

3 Ω

a

b

18 V

10 Ω

Figure P 5.4-4

P 5.4-5 Find the Th!evenin equivalent circuit for the circuit

shown in Figure P 5.4-5.

Answer: voc ¼ $2 V and Rt ¼ $8=3V

+–

8 Ω

4 Ω

a

b

6 V va

0.75va

–

+

Figure P 5.4-5

P 5.4-6 Find the Th!evenin equivalent circuit for the circuit

shown in Figure P 5.4-6.

+
– va2va 3 A

a

b

+

–

3 Ω

6 Ω

3 Ω

Figure P 5.4-6

P 5.4-7 The equivalent circuit in Figure P 5.4-7 is obtained by

replacing part of the original circuit by its Th!evenin equivalent

circuit. The values of the parameters of the Th!evenin equivalent

circuit are

voc ¼ 15 V and Rt ¼ 60V

Determine the following:

(a) The values of Vs and Ra. (Four resistors in the original

circuit have equal resistance, Ra.)

(b) The value of Rb required to cause i ¼ 0.2 A.

(c) The value of Rb required to cause v ¼ 12 V.

voc

+–

Ra

Ra

Vs Ra Rbv
+

–

i

+–

R t

Rb

original circuit

equivalent circuit

Ra

Figure P 5.4-7
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P 5.4-8 Aresistor,R,wasconnectedtoacircuitboxasshown

in Figure P 5.4-8. The voltage v was measured. The resistance was

changed, and the voltage was measured again. The results are

shown in the table. Determine the Th!evenin equivalent of the

circuit within the box and predict the voltage v when R ¼ 8 kV.

2 kΩ

4 kΩ

6 V

2 V

Circuit v

+

–
R

R v

i

Figure P 5.4-8

P 5.4-9 A resistor, R, was connected to a circuit box as

shown in Figure P 5.4-9. The current i was measured. The

resistance was changed, and the current was measured again.

The results are shown in the table.

(a) Specify the value of R required to cause i ¼ 2 mA.

(b) Given that R > 0, determine the maximum possible value

of the current i.

Hint: Use the data in the table to represent the circuit by a

Th!evenin equivalent.

2 kΩ

4 kΩ

4 mA

3 mA
Circuit v

+

–

R

R i

i

Figure P 5.4-9

P 5.4-10 For the circuit of Figure P 5.4-10, specify the

resistance R that will cause current ib to be 2 mA. The current ia
has units of amps.

Hint: Find the Th!evenin equivalent circuit of the circuit

connected to R.

+–12 V R

6 kΩ

1 kΩ

2000ia

+ –

ia ib

Figure P 5.4-10

P 5.4-11 For the circuit of Figure P 5.4-11, specify the

value of the resistance RL that will cause current iL to be $2 A.

Answer: RL ¼ 12V

10 A 2 Ω

4i

a

b

+ –

i

iL RL

Figure P 5.4-11

P 5.4-12 The circuit shown in Figure P 5.4-12 contains an

adjustable resistor. The resistance R can be set to any value in

the range 0 0 R 0 100 kV.

(a) Determine the maximum value of the current ia that can be

obtained by adjusting R. Determine the corresponding

value of R.

(b) Determine the maximum value of the voltage va that can be

obtained by adjusting R. Determine the corresponding

value of R.

(c) Determine the maximum value of the power supplied to the

adjustable resistor that can be obtained by adjusting R.

Determine the corresponding value of R.

12 V

R

2 mA

24 kΩ

18 kΩ

12 kΩ

ia

+ −va

+–

Figure P 5.4-12

P 5.4-13 The circuit shown in Figure P 5.4-13 consists of

two parts, the source (to the left of the terminals) and the load.

The load consists of a single adjustable resistor having resist-

ance 0 0 RL 0 20V. The resistance R is fixed but unspecified.

When RL ¼ 4V, the load current is measured to be io ¼ 0.375 A.

When RL ¼ 8V, the value of the load current is io ¼ 0.300 A.

(a) Determine the value of the load current when RL ¼ 10V.

(b) Determine the value of R.

24 V R

48 Ω

source load

RL

io

+–

Figure P 5.4-13

P 5.4-14 The circuit shown in Figure P 5.4-14 contains an

unspecified resistance, R. Determine the value of R in each of

the following two ways.

(a) Write and solve mesh equations.

(b) Replace the part of the circuit connected to the resistor R by

a Th!evenin equivalent circuit. Analyze the resulting circuit.

R

0.25 A

40 V

20 Ω 40 Ω

10 Ω20 Ω

+–

Figure P 5.4-14
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P 5.4-15 Consider the circuit shown in Figure P 5.4-15.

Replace the part of the circuit to the left of terminals a–b by

its Th!evenin equivalent circuit. Determine the value of the

current io.

96 Ω 32 Ω

20 V

32 Ω

30 Ω120 Ω

a

b

io

vo

+

–

+ –

Figure P 5.4-15

P 5.4-16 An ideal voltmeter is modeled as an open circuit. A

more realistic model of a voltmeter is a large resistance. Figure

P 5.4-16a shows a circuit with a voltmeter that measures the

voltage vm. In Figure P 5.4-16b, the voltmeter is replaced by the

model of an ideal voltmeter, an open circuit. The voltmeter

measures vmi, the ideal value of vm.

Voltmeter

200 Ω 10 Ω

50 Ω25 V Rm

200 Ω 10 Ω

50 Ω25 V

200 Ω 10 Ω

50 Ω25 V

(a)

(b)

(c)

+–

+–

+– vm

+

–

vm

+

–

vmi

+

–

Figure P 5.4-16

As Rm ! 1, the voltmeter becomes an ideal voltmeter

and vm ! vmi. When Rm < 1, the voltmeter is not ideal and

vm > vmi. The difference between vm and vmi is a measurement

error caused by the fact that the voltmeter is not ideal.

(a) Determine the value of vmi.

(b) Express the measurement error that occurs when Rm ¼
1000V as a percentage of vmi.

(c) Determine the minimum value of Rm required to ensure

that the measurement error is smaller than 2 percent of vmi.

P 5.4-17 Given that 0 0 R 0 1 in the circuit shown in Figure

P 5.4-17, consider these two observations:

Observation 1: When R ¼ 2V then vR ¼ 4 V and iR ¼ 2 A.

Observation 1: When R ¼ 6V then vR ¼ 6 V and iR ¼ 1 A.

Determine the following:

(a) The maximum value of iR and the value of R that causes iR
to be maximal.

(b) The maximum value of vR and the value of R that causes vR

to be maximal.

(c) The maximum value of pR ¼ iRvR and the value of R that

causes pR to be maximal.

vs
+–

ia iR

Bia vR R

+

–

24 �

6 �

Figure P 5.4-17

P 5.4-18 Consider the circuit shown in Figure P 5.4-18.

Determine

(a) The value of vR that occurs when R ¼ 9V.

(b) The value of R that causes vR ¼ 5.4 V.

(c) The value of R that causes iR ¼ 300 mA.

+–

iR

vR R

+

–

20 Ω 6 Ω

30 Ω300 mA9 V

Figure P 5.4-18

P 5.4-19 The circuit shown in Figure P 5.4-19a can be reduced

to the circuit shown in Figure P 5.4-19b using source transfor-

mations and equivalent resistances. Determine the values of the

source voltage voc and the resistance R.

(a)

(b)

42 Ω

R

C18 V+

–
84 Ω

voc
+

–

46 Ω

C

Figure P 5.4-19
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P 5.4-20 The equivalent circuit in Figure P 5.4-20 is obtained

by replacing part of the original circuit by its Th!evenin

equivalent circuit. The values of the parameters of the Th!evenin

equivalent circuit are

voc ¼ 15 V and Rt ¼ 60 V

Determine the following:

(a) The values of Vs and Ra. (Three resistors in the original

circuit have equal resistance, Ra.)

(b) The value of Rb required to cause i ¼ 0.2 A.

(c) The value of Rb required to cause v ¼ 5 V.

voc

+–

Ra Ra

Vs Ra Rbv
+

–

i

+–

R t

Rb

original circuit

equivalent circuit
Figure P 5.4-20

Section 5.5 Norton’s Equivalent Circuit

P 5.5-1 The part of the circuit shown in Figure P 5.5-1a

to the left of the terminals can be reduced to its Norton

equivalent circuit using source transformations and equi-

valent resistance. The resulting Norton equivalent circuit,

shown in Figure P 5.5-1b, will be characterized by the

parameters:

isc ¼ 0:5A and Rt ¼ 20V

(a) Determine the values of vS and R1.

(b) Given that 0 0 R2 0 1, determine the maximum values of

the voltage v and of the power p ¼ vi.

Answers: vs ¼ 37:5 V; R1 ¼ 25V; max v ¼ 10 V and max

p ¼ 1.25 W

+ –

i

v

vs

R1 R2

+

–

50 �

50 �0.25 A

i

vRt R2

+

–

isc

(a)

(b)

Figure P 5.5-1

P 5.5-2 Two black boxes are shown in Figure P 5.5-2. Box

A contains the Th!evenin equivalent of some linear circuit, and

box B contains the Norton equivalent of the same circuit. With

access to just the outsides of the boxes and their terminals, how

can you determine which is which, using only one shorting wire?

1 Ω1 A

a

b

1 V

1 Ω a

b

Box A Box B

+–

Figure P 5.5-2 Black boxes problem.

P 5.5-3 The circuit shown in Figure P 5.5-3a can be reduced

to the circuit shown in Figure P 5.5-3b using source transfor-

mations and equivalent resistances. Determine the values of the

source current isc and the resistance R.

80 �

i sc

L

L

R
160 �

48 �

4.8 A

(a)

(b)

Figure P 5.5-3
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P 5.5-4 Find the Norton equivalent circuit for the circuit

shown in Figure P 5.5-4.

4 A 5 A

5 �3 �

8 �

a

b

Figure P 5.5-4

P 5.5-5 The circuit shown in Figure P 5.5-5b is the Norton

equivalent circuit of the circuit shown in Figure P 5.5-5a.

Find the value of the short-circuit current isc and Th!evenin

resistance Rt.

Answer: isc ¼ 1.13 A and Rt ¼ 7.57V

+–

(a) (b)

3 Ω

6 Ω Rt10 V

5 Ω

isc
2ia

+–

ia

Figure P 5.5-5

P 5.5-6 The circuit shown in Figure P 5.5-6b is the Norton

equivalentcircuitof thecircuit showninFigureP5.5-6a.Find the

value of the short-circuit current isc and Th!evenin resistance Rt.

Answer: isc ¼ $24 A and Rt ¼ $3V

–+

(a) (b)

3 Ω 6 Ω

Rt1.33va24 V iscva

+

–

Figure P 5.5-6

P 5.5-7 Determine the value of the resistance R in the circuit

shown in Figure P 5.5-7 by each of the following methods:

(a) Replace the part of the circuit to the left of terminals a–b by

its Norton equivalent circuit. Use current division to

determine the value of R.

(b) Analyze the circuit shown Figure P 5.5-7 using mesh equa-

tions. Solve the mesh equations to determine the value of R.

5 kΩ 10 kΩ

0.5 mA4 ib
ib

b

R25 V

a

+–

Figure P 5.5-7

P 5.5-8 Find the Norton equivalent circuit for the circuit

shown in Figure P 5.5-8.

6 Ω

4 Ω 1 Ω

3 Ω2.5 A

2 ix

a

b

ix

+ –

Figure P 5.5-8

P 5.5-9 Find the Norton equivalent circuit for the circuit

shown in Figure P 5.5-9.

a

b

3 Ω

5 Ω

4 Ω

2.5 v1

v1

+

–

1 3 A

Figure P 5.5-9

P 5.5-10 An ideal ammeter is modeled as a short circuit. A

more realistic model of an ammeter is a small resistance. Figure

P 5.5-10a shows a circuit with an ammeter that measures the

current im. In Figure P 5.5-10b, the ammeter is replaced by the

model of an ideal ammeter, a short circuit. The ammeter

measures imi, the ideal value of im.

Ammeter

im

imi

3 mA

4 kΩ

4 kΩ 2 kΩ

im

3 mA 4 kΩ

4 kΩ

4 kΩ

2 kΩ

3 mA 4 kΩ 2 kΩ

Rm

(a)

(b)

(c)

Figure P 5.5-10
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As Rm ! 0, the ammeter becomes an ideal ammeter and

im ! imi. When Rm > 0, the ammeter is not ideal and im < imi.

The difference between im and imi is a measurement error

caused by the fact that the ammeter is not ideal.

(a) Determine the value of imi.

(b) Express the measurement error that occurs when Rm ¼
20V as a percentage of imi.

(c) Determine the maximum value of Rm required to ensure

that the measurement error is smaller than 2 percent of imi.

P 5.5-11 Determine values of Rt and isc that cause the circuit

shown in Figure P 5.5-11b to be the Norton equivalent circuit

of the circuit in Figure P 5.5-11a.

Answer: Rt ¼ 3V and isc ¼ $2 A

isc Rt12 V

6 Ω 3 Ω

+–

a

b

a

b

+
–

ia

2ia

(a) (b)

Figure P 5.5-11

P 5.5-12 Use Norton’s theorem to formulate a general

expression for the current i in terms of the variable resistance R

shown in Figure P 5.5-12.

Answer: i ¼ 20=(8 þ R) A

30 V
+– i

12 � 8 �

16 �R

a

b

Figure P 5.5-12

Section 5.6 Maximum Power Transfer

P 5.6-1 The circuit shown in Figure P 5.6-1 consists of two

parts separated by a pair of terminals. Consider the part of the

circuit to the left of the terminals. The open circuit voltage is

voc ¼ 8 V, and short-circuit current is isc ¼ 2 A. Determine the

values of (a) the voltage source voltage vs and the resistance R2,

and (b) the resistance R that maximizes the power delivered to

the resistor to the right of the terminals, and the corresponding

maximum power.

vs

8 Ω R2

R+–
+
–

ia

4 ia

i

v

+

–

Figure P 5.6-1

P 5.6-2 The circuit model for a photovoltaic cell is given

in Figure P 5.6-2 (Edelson, 1992). The current is is proportional

to the solar insolation (kW/m2).

(a) Find the load resistance, RL, for maximum power transfer.

(b) Find the maximum power transferred when is ¼ 1 A.

is RL

1 �

100 �

Figure P 5.6-2 Circuit model of a photovoltaic cell.

P 5.6-3 For the circuit in Figure P 5.6-3, (a) find R such

that maximum power is dissipated in R, and (b) calculate the

value of maximum power.

Answer: R ¼ 60V and Pmax ¼ 54 mW

R

100 �150 �

6 V 2 V+– +–

Figure P 5.6-3

P 5.6-4 For the circuit in Figure P 5.6-4, prove that for Rs

variable and RL fixed, the power dissipated in RL is maximum

when Rs ¼ 0.

vs RL

Rs

+–

source
network

load

Figure P 5.6-4

P 5.6-5 Determine the maximum power that can be

absorbed by a resistor, R, connected to terminals a–b of the

circuit shown in Figure P 5.6-5. Specify the required value of R.

20 A

20 �

8 � a

10 �

120 � 50 �

b

Figure P 5.6-5 Bridge circuit.
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P 5.6-6 Figure P 5.6-6 shows a source connected to a load

through an amplifier. The load can safely receive up to 15 W of

power. Consider three cases:

(a) A ¼ 20 V/V and Ro ¼ 10V. Determine the value of RL that

maximizes the power delivered to the load and the corre-

sponding maximum load power.

(b) A ¼ 20 V/V and RL ¼ 8V. Determine the value of Ro that

maximizes the power delivered to the load and the corre-

sponding maximum load power.

(c) Ro ¼ 10V and RL ¼ 8V. Determine the value of A that

maximizes the power delivered to the load and the corre-

sponding maximum load power.

500 mV 100 kΩ va

source amplifier load

RL

Ro

Ava
+–

+
–

+

–

Figure P 5.6-6

P 5.6-7 The circuit in Figure P 5.6-7 contains a variable

resistance, R, implemented using a potentiometer. The resistance

of the variable resistor varies over the range 0 0 R 0 1000V.

The variable resistor can safely receive 1=4 W power. Determine

the maximum power received by the variable resistor. Is the circuit

safe?

180 Ω

150 Ω 470 Ω

120 Ω

10 V 20 V

R

+–+–

Figure P 5.6-7

P 5.6-8 For the circuit of Figure P 5.6-8, find the power

delivered to the load when RL is fixed and Rt may be varied

between 1V and 5V. Select Rt so that maximum power is

delivered to RL.

Answer: 13.9 W

10 V
+– RL = 5 Ω

Rt

Figure P 5.6-8

P 5.6-9 A resistive circuit was connected to a variable resistor,

and the power delivered to the resistor was measured as shown in

Figure P 5.6-9. Determine the Th!evenin equivalent circuit.

Answer: Rt ¼ 20V and voc ¼ 20 V

10 20 30

5

Power
(W)

400 

R (ohms)

Figure P 5.6-9

P 5.6-10 The part circuit shown in Figure P 5.6-10a to left of

the terminals can be reduced to its Norton equivalent circuit

using source transformations and equivalent resistance. The

resulting Norton equivalent circuit, shown in Figure P 5.6-10b,

will be characterized by the parameters:

isc ¼ 1:5A and Rt ¼ 80V

(a) Determine the values of is and R1.

(b) Given that 0 0 R2 0 1, determine the maximum value of

p = vi, the power delivered to R2.

50 Ω
+

–
i s vR1

i

R225 V +–

50 Ω (a)

+

–
v

i

R2Rti sc

(b)
Figure P 5.6-10

P 5.6-11 Given that 0 0 R 0 1 in the circuit shown in Figure

P 5.6-11, determine (a) maximum value of ia, (b) the maximum

value of va, and (c) the maximum value of pa = ia va.

+– v a
+

−

8 Ω R

4 Ω

12 V

i a

Figure P 5.6-11

P 5.6-12 Given that 0 0 R 0 1 in the circuit shown in

Figure P 5.6-12, determine value of R that maximizes the

power pa = ia va and the corresponding maximum value of pa.
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+– v a

+

−
20 � R

8 �

6 V

i a 2 �

Figure P 5.6-12

Section 5.8 Using PSpice to Determine the Th!evenin

Equivalent Circuit

P 5.8-1 The circuit shown in Figure P 5.8-1 is separated into two

parts by a pair of terminals. Call the part of the circuit to the left of

the terminals circuit A and the part of the circuit to the right of the

terminal circuit B. Use PSpice to do the following:

(a) Determine the node voltages for the entire circuit.

(b) Determine the Th!evenin equivalent circuit of circuit A.

(c) Replace circuit A by its Th!evenin equivalent and determine

the node voltages of the modified circuit.

(d) Compare the node voltages of circuit B before and after

replacing circuit A by its Th!evenin equivalent.

+–

60 Ω

10 Ω 10 Ω

15 Ω10 Ω20 Ω

10 Ω

12 Ω

40 Ω

250 mA15 V

Figure P 5.8-1

Section 5.9 How CanWe Check . . . ?

P 5.9-1 For the circuit of Figure P 5.9-1, the current i has been

measured for three different values of R and is listed in the

table. Are the data consistent?

4 kΩ

4 kΩ1 kΩ

R

10 V

ix

i

5000ix

+–+ –
R(Ω) i(mA)

5000

500

0

16.5

43.8

97.2

Figure P 5.9-1

P 5.9-2 Your lab partner built the circuit shown in

Figure P 5.9-2 and measured the current i and voltage v

corresponding to several values of the resistance R. The results

are shown in the table in Figure P 5.9-2. Your lab partner says

that RL ¼ 8000V is required to cause i ¼ 1 mA. Do you agree?

Justify your answer.

6 kΩ

18 kΩ2 mA 12 kΩ

24 kΩ

+–

i

v

R

R vi

+ –

12 V

open

10 kΩ

short

0 mA

0.857 mA

3 mA

12 V

8.57 V

0 V

Figure P 5.9-2

P 5.9-3 In preparation for lab, your lab partner determined the

Th!evenin equivalent of the circuit connected to RL in Figure

P 5.9-3. She says that the Th!evenin resistance is Rt ¼
6
11

R and

the open-circuit voltage is voc ¼
60
11

V. In lab, you built the circuit

using R ¼ 110V and RL ¼ 40V and measured that i ¼ 54.5 mA.

Is this measurement consistent with the prelab calculations? Justify

your answers.

+–

+–

+–
Load

3R

2R

R

RL

30 V

20 V

10 V

i

Figure P 5.9-3

P 5.9-4 Your lab partner claims that the current i in Figure

P 5.9-4 will be no greater than 12.0 mA, regardless of the value

of the resistance R. Do you agree?

+–12 V 3 kΩ 6 kΩ

500 Ω

1500 Ω

i

R

Figure P 5.9-4
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P 5.9-5 Figure P 5.9-5 shows a circuit and some correspond-

ing data. Two resistances, R1 and R, and the current source

current are unspecified. The tabulated data provide values of

the current i and voltage v corresponding to several values of

the resistance R.

(a) Consider replacing the part of the circuit connected to the

resistor R by a Th!evenin equivalent circuit. Use the data in

rows 2 and 3 of the table to find the values of Rt and voc, the

Th!evenin resistance, and the open-circuit voltage.

18 Ω

12 Ω

+–
i

R

R1

is
12 V 24 Ω

v

+

–

(a)

R, Ω v, Vi, A

0

10

20

40

80

3

1.333

0.857

0.5

?

0

13.33

17.14

?

21.82

(b)

Figure P 5.9-5

(b)

Use the results of part (a) to verify that the tabulated data

are consistent.

(c) Fill in the blanks in the table.

(d) Determine the values of R1 and is.

PSpice Problems

SP 5-1 The circuit in Figure SP 5-1 has three inputs: v1, v2,

and i3. The circuit has one output, vo. The equation

vo ¼ a v1 þ b v2 þ c i3

expresses the output as a function of the inputs. The

coefficients a, b, and c are real constants.

(a) Use PSpice and the principle of superposition to determine

the values of a, b, and c.

(b) Suppose v1 ¼ 10 V and v2 ¼ 8 V, and we want the output to

be vo ¼ 7 V. What is the required value of i3?

Hint: The output is given by vo¼ a when v1¼1 V, v2¼0 V, and

i3 ¼ 0 A.

+–

+ –

vo

v2

i3v1

+

–

100 Ω

100 Ω 100 Ω

Figure SP 5-1

Answer: (a) vo ¼ 0.3333v1 þ 0.3333v2 þ 33.33i3, (b) i3 ¼ 30

mA

SP 5-2 The pair of terminals a–b partitions the circuit in

Figure SP 5-2 into two parts. Denote the node voltages at

nodes 1 and 2 as v1 and v2. Use PSpice to demonstrate that

performing a source transformation on the part of the circuit to

the left of the terminal does not change anything to the right of

the terminals. In particular, show that the current io and the node

voltages v1 and v2 have the same values after the source

transformation as before the source transformation.

+–

+ –
100 Ω 8 V

a 1 2

b

10 V 100 Ω 100 Ω 30 mA
io

Figure SP 5-2
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SP 5-3 Use PSpice to find the Th!evenin equivalent circuit

for the circuit shown in Figure SP 5-3.

Answer: voc ¼ $2 V and Rt ¼ $8=3V

+–

8 Ω

4 Ω

a

b

6 V va

0.75va

–

+

Figure SP 5-3

SP 5-4 The circuit shown in Figure SP 5-4b is the Norton

equivalent circuit of the circuit shown in Figure SP 5-4a.

Find the value of the short-circuit current isc and Th!evenin

resistance Rt.

Answer: isc ¼ 1.13 V and Rt ¼ 7.57V

+

–

(a) (b)

3 Ω

6 Ω Rt10 V

5 Ω

isc
2ia

+–

ia

Figure SP 5-4

Design Problems

DP 5-1 The circuit shown in Figure DP 5-1a has four un-

specified circuit parameters: vs, R1, R2, and R3. To design this

circuit, we must specify the values of these four parameters. The

graph shown in Figure DP 5-1b describes a relationship between

the current i and the voltage v.

R2

R3

vs

R1 i

+

–

v+–

v, V

i, mA

–2

–4

–6

–8

2

4

6

2 4 6 8–2–4–6

(a)

(b)

Figure DP 5-1

Specify values of vs, R1, R2, and R3 that cause the current i

and the voltage v in Figure DP 5-1a to satisfy the relationship

described by the graph in Figure DP 5-1b.

First Hint: The equation representing the straight line in Figure

DP 5-1b is

v ¼ $Rti þ voc
That is, the slope of the line is equal to $1 times the Th!evenin

resistance, and the v-intercept is equal to the open-circuit voltage.

Second Hint: There is more than one correct answer to this

problem. Try setting R1 ¼ R2.

DP 5-2 The circuit shown in Figure DP 5-2a has four un-

specified circuit parameters: is, R1, R2, and R3. To design this

circuit, we must specify the values of these four parameters. The

graph shown in Figure DP 5-2b describes a relationship between

the current i and the voltage v.

Specify values of is, R1, R2, and R3 that cause the current i

and the voltage v in Figure DP 5-2a to satisfy the relationship

described by the graph in Figure DP 5-2b.

First Hint: Calculate the open-circuit voltage voc and the

Th!evenin resistance Rt, of the part of the circuit to the left of

the terminals in Figure DP 5-2a.

Second Hint: The equation representing the straight line in

Figure DP 5-2b is

v ¼ $Rti þ voc
That is, the slope of the line is equal to $1 times the Th!evenin

resistance, and the v-intercept is equal to the open-circuit

voltage.

Third Hint: There is more than one correct answer to this

problem. Try setting both R3 and R1 þ R2 equal to twice the

slope of the graph in Figure DP 5-2b.

R3R1

R2

is

i

+

–

v

(a)
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v, V

i, mA

–2

–4

–6

–8

2

4

6

2 4 6 8–2–4–6

(b)

Figure DP 5-2

DP 5-3 The circuit shown in Figure DP 5-3a has four un-

specified circuit parameters: vs, R1, R2, and R3. To design this

circuit, we must specify the values of these four parameters. The

graph shown in Figure DP 5-3b describes a relationship between

the current i and the voltage v.

R2

R3

vs

R1 i

+

–

v+–

v, V

i, mA

–2

–4

–6

–8

2

4

6

2 4 6 8–2–4–6

(a)

(b)

Figure DP 5-3

Is it possible to specify values of vs, R1, R2, and R3 that

cause the current i and the voltage v in Figure DP 5-1a to satisfy

the relationship described by the graph in Figure DP 5-3b?

Justify your answer.

DP 5-4 The circuit shown in Figure DP 5-4a has four un-

specified circuit parameters: vs, R1, R2, and d, where d is the gain

of the CCCS. To design this circuit, we must specify the values

of these four parameters. The graph shown in Figure DP 5-4b

describes a relationship between the current i and the voltage v.

Specify values of vs, R1, R2, and d that cause the current i

and the voltage v in Figure DP 5-4a to satisfy the relationship

described by the graph in Figure DP 5-4b.

First Hint: The equation representing the straight line in Figure

DP 5-4b is

v ¼ $Rti þ voc

That is, the slope of the line is equal to $1 times the Th!evenin

resistance and the v-intercept is equal to the open-circuit

voltage.

Second Hint: There is more than one correct answer to this

problem. Try setting R1 ¼ R2.

dia R2

R1

(a)

vs
+–

ia i

+

–

v

(b)

v, V

i, mA

–2

–4

–6

–8

2

4

6

2 4 6 8–2–4–6

Figure DP 5-4
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